scholarly journals Development of an Inner Finishing Method for Brass Cone Pipe via a Movable Manual Electromagnet in a Magnetic Abrasive Finishing Process

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1379
Author(s):  
Jeong Su Kim ◽  
Sieb Chanchamnan ◽  
Lida Heng ◽  
Guenil Kim ◽  
Sung-Hoon Oh ◽  
...  

This paper describes the development of a movable manual electromagnet with an adjustable flux density to improve the inner surface smoothness of a cone pipe using a magnetic abrasive finishing process. This method is fabricated to reduce further the roughness of the internal surface of the conic shape, which was modeled as an electromagnet oscillating in the work zone with a ball roller. Statistically significant improvement in the process was achieved using unbounded magnetic abrasive, light oil, flux density, controlled feed rate, and constant rotational speed in the experiment. The ball transfer equipped on the top of the electromagnet pole plays an essential role in spinning over the outer cone pipe during the experiment and helps reduce friction while the workpiece fluctuates. Furthermore, the flux density can be changed to control the magnetic force and select the most acceptable option. In addition, a procedure for finishing has been designed for finishing a cone pipe, and we sought to understand how the flux density affects the material in removal exterior roughness. As a result, the flux density is clarified, and a higher flux density achieves excellent removal of surface roughness of the inner deformed pipe from 1.68 μm to 0.39 μm within 24 min.

2008 ◽  
Vol 53-54 ◽  
pp. 137-140
Author(s):  
Y. Chen ◽  
X. Wang ◽  
C.J. Zhang

It is very difficult matter that polishes the internal surface of the pipe, especially to the thin pipe with the traditional surface technology. Because a usual tool cannot into the inner surface of the thin pipe and automation do not achieved easily. This paper brings up a new method that utilize the characteristic of the magnetic force line may penetrate the non-magnetic material, may using the magnetic abrasive finishing (MAF) method complete to the inner surface of the thin pipe precise polishing. The magnetic abrasive finishing does not need special equipment to complete the complex shape internal surface polishing. Moreover, we already obtained the famous processing effect through the experiment. Meanwhile this paper analyses some factors of influences efficiency, and propose some solution method.


Author(s):  
Alireza Fadaei Tehrani ◽  
Mehrdad Givi ◽  
Ashkan Sepehr Afghan

Magnetic Abrasive Finishing (MAF) is one of the nontraditional machining methods with vast applications in high-tech industries such as medical, aerospace and semiconductor manufacturing areas. Several researches have been done in order to studying the influence of various parameters on magnetic abrasive finishing process and characteristics of finished surface. The present paper investigates the effects of some effective parameters such as mesh size of the abrasives, the weight of the abrasive powder and the number of cycles on internal surface roughness of Aluminum tube. The optimum percentage of oil should be added to the abrasive powder was attained and applied for the main tests. Then, design of experiments (DOE) methods and Analysis of Variance (ANOVA) have been applied to determine significant factors and also to obtain an equation based on data regression.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093200
Author(s):  
Anyuan Jiao ◽  
Guofu Zhang ◽  
Binghong Liu ◽  
Weijun Liu

Based on the mechanism of magnetic abrasive finishing, the 7075 aluminum alloy (Al7075) was used in the experimental study. In order to improve wall surface quality and to remove the edge burrs of the hole, a novel magnetic abrasive finishing process was proposed. First, the radial magnetizing pole for the inner surface finishing process was confirmed. The evaluation of magnet spinning speed, abrasive mesh, and abrasive filling amount on the diameter deviation of the hole and surface roughness of the inner wall was studied. According to the characteristics of magnetic abrasive finishing process, Taguchi’s method was used to carry out the test. Through the analysis of variance, the best process parameters were determined and verified. The inner surface roughness was further decreased and the surface morphology was more uniform after finishing process. Second, the edge burr removal process of the hole exit was also studied, and the geometry of the burrs was measured before and after the magnetic abrasive finishing process. The results show that the burrs were significantly removed and the burr removal efficiency was improved by 33.3% compared with the conventional magnetic abrasive finishing process. Finally, the improved magnetic abrasive finishing process is an effective method in improving finishing quality of the Al7075 holes.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Yanhua Zou ◽  
Ryunosuke Satou ◽  
Ozora Yamazaki ◽  
Huijun Xie

High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.


Sign in / Sign up

Export Citation Format

Share Document