scholarly journals Simulation of Sheet Metal Forming Processes Using a Fully Rheological-Damage Constitutive Model Coupling and a Specific 3D Remeshing Method

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 991 ◽  
Author(s):  
Abel Cherouat ◽  
Houman Borouchaki ◽  
Zhang Jie

Automatic process modeling has become an effective tool in reducing the lead-time and the cost for designing forming processes. The numerical modeling process is performed on a fully coupled damage constitutive equations and the advanced 3D adaptive remeshing procedure. Based on continuum damage mechanics, an isotropic damage model coupled with the Johnson–Cook flow law is proposed to satisfy the thermodynamic and damage requirements in metals. The Lemaitre damage potential was chosen to control the damage evolution process and the effective configuration. These fully coupled constitutive equations have been implemented into a Dynamic Explicit finite element code Abaqus using user subroutine. On the other hand, an adaptive remeshing scheme in three dimensions is established to constantly update the deformed mesh to enable tracking of the large plastic deformations. The quantitative effects of coupled ductile damage and adaptive remeshing on the sheet metal forming are studied, and qualitative comparison with some available experimental data are given. As illustrated in the presented examples this overall strategy ensures a robust and efficient remeshing scheme for finite element simulation of sheet metal‐forming processes.

2008 ◽  
Vol 587-588 ◽  
pp. 736-740
Author(s):  
Pedro Teixeira ◽  
Abel D. Santos ◽  
J. César de Sá ◽  
Augusto Barata da Rocha

The optimisation of sheet metal processes by using numerical simulations has become a key factor to a continuously increasing requirement for time and cost efficiency, for quality improvement and materials saving, in many manufacturing areas such as automotive, aerospace, building, packaging and electronic industries. The introduction of new materials brought new challenges to sheet metal forming processes. The behaviour observed with conventional steels may not be applied when using high-strength steels or aluminium alloys. Numerical codes need to model correctly the material and different constitutive equations must be considered to describe with greater accuracy its behaviour. This enhancement of material description may provide a better prediction of the forming limits, enabling an assessment of the influence of each forming parameter on the necking occurrence and the improvement of press performance. This paper presents two numerical approaches for failure prediction in sheet metal forming operations: one is the implementation of the Lemaitre’s ductile damage model in the Abaqus/Explicit code in accordance with the theory of Continuum Damage Mechanics and the other is the traditional use of FLDs, usually employed as an analysis of the finite element solution in which the necking phenomenon is carried out in the framework of Marciniak-Kuczinsky (M-K) analysis coupled with the conventional theory of plasticity. The previous strategies and corresponding results are compared with two experimental failure cases, in order to test and validate each of these strategies.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2013 ◽  
Vol 554-557 ◽  
pp. 919-927 ◽  
Author(s):  
Hamdaoui Mohamed ◽  
Guénhaël Le Quilliec ◽  
Piotr Breitkopf ◽  
Pierre Villon

The aim of this work is to present a POD (Proper Orthogonal Decomposition) based surrogate approach for sheet metal forming parametrized applications. The final displacement field for the stamped work-piece computed using a finite element approach is approximated using the method of snapshots for POD mode determination and kriging for POD coefficients interpolation. An error analysis, performed using a validation set, shows that the accuracy of the surrogate POD model is excellent for the representation of finite element displacement fields. A possible use of the surrogate to assess the quality of the stamped sheet is considered. The Green-Lagrange strain tensor is derived and forming limit diagrams are computed on the fly for any point of the design space. Furthermore, the minimization of a cost function based on the surrogate POD model is performed showing its potential for solving optimization problems.


Sign in / Sign up

Export Citation Format

Share Document