scholarly journals A Novel Energy-Critical Multiaxial Fatigue Life Prediction for Low Cycle Fatigue under Mixed-Mode Loading

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1066 ◽  
Author(s):  
Jie Zhou ◽  
Hong-Zhong Huang ◽  
He Li

Fatigue failure evolution is a process of damage accumulation under continued stresses and forces. The mechanical component is always subjected to various loadings and the lifespan is mainly governed by fatigue. The low cycle fatigue (LCF) is a key failure mode of many components. In order to estimate the LCF life under multiaxial loadings in practical design, a modified model is proposed, based on the Fatemi-Socie (FS) and Smith-Watson-Topper (SWT) models, which considers the effects of shear and tensile behaviours. Then a novel judgment criterion is presented to distinguish the mixed-mode loadings and the procedures to employ the proposed model are also presented. Furthermore, two types of materials (TC4 and GH4169) and comparisons with the FS, Wang-Brown (WB) and redefined SWT (Re-SWT) models are employed to verify the accuracy and effectiveness of the proposed model, which has shown more reasonable predictions than the other models.

2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1060 ◽  
Author(s):  
Alejandro Cruces ◽  
Pablo Lopez-Crespo ◽  
Belen Moreno ◽  
Fernando Antunes

This work analyses the prediction capabilities of a recently developed critical plane model, called the SKS method. The study uses multiaxial fatigue data for S355-J2G3 steel, with in-phase and 90° out-of-phase sinusoidal axial-torsional straining in both the low cycle fatigue and high cycle fatigue ranges. The SKS damage parameter includes the effect of hardening, mean shear stress and the interaction between shear and normal stress on the critical plane. The collapse and the prediction capabilities of the SKS critical plane damage parameter are compared to well-established critical plane models, namely Wang-Brown, Fatemi-Socie, Liu I and Liu II models. The differences between models are discussed in detail from the basis of the methodology and the life results. The collapse capacity of the SKS damage parameter presents the best results. The SKS model produced the second-best results for the different types of multiaxial loads studied.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093622
Author(s):  
Jianhui Liu ◽  
Xin Lv ◽  
Yaobing Wei ◽  
Xuemei Pan ◽  
Yifan Jin ◽  
...  

Multiaxial fatigue of the components is a very complex behavior. This analyzes the multiaxial fatigue failure mechanism, reviews and compares the advantages and disadvantages of the classic model. The fatigue failure mechanism and fatigue life under multiaxial loading are derived through theoretical analysis and formulas, and finally verified with the results of multiaxial fatigue tests. The model of multiaxial fatigue life for low-cycle fatigue life prediction model not only improves the prediction accuracy of the classic model, but also considers the effects of non-proportional additional hardening phenomena and fatigue failure modes. The model is proved to be effective in low-cycle fatigue life prediction under different loading paths and types for different materials. Compared with the other three classical models, the proposed model has higher life prediction accuracy and good engineering applicability.


2012 ◽  
Vol 479-481 ◽  
pp. 2135-2140
Author(s):  
Lei Wang ◽  
Tian Zhong Sui ◽  
Hang Zhao ◽  
En Guo Men

First, several widely used models of the multiaxial low-cycle fatigue life prediction based on the critical plane approach were presented in this paper, and the predicted results of these models for a medium carbon steel under the condition of multiaxial low-cycle fatigue loading were compared. Second, the stochastic expressions and probability density function curves of the fatigue performance parameters were obtained by probabilistic analysis of the medium carbon steel fatigue data. Finally, the probabilistic model of the multiaxial fatigue life prediction was simulated by Monte Carlo Method, which should provide a basis for the reliability analysis of engineering components subjected to the multiaxial complex loads.


Author(s):  
Shun-Peng Zhu ◽  
Rui Sun ◽  
Hong-Zhong Huang ◽  
Ming J. Zuo

Based on ductility exhaustion theory and the generalized damage parameter, a new viscosity-based life prediction model is put forward to account for creep and mean strain or stress effects in a low cycle fatigue regime. The mechanisms of loading waveform and cyclic hardening effects are also taken into account within this model. It assumes that damage accrues by means of viscous flow and ductility consumption relates only to plastic strain and creep strain under high temperature low cycle fatigue conditions. The proposed model provides a better prediction on the fatigue behaviors of Superalloy GH4133 than the Goswami’s ductility model and the generalized damage parameter. Compared with the proposed model and the generalized damage parameter, the Goswami’s model cannot properly account for creep and mean stress effects on the low cycle fatigue life. Under non-zero mean strain conditions, the proposed model provides more accurate predictions of GH4133 Superalloy than that with zero mean strains.


2014 ◽  
Vol 627 ◽  
pp. 425-428
Author(s):  
Dan Jin ◽  
Da Jiang Tian ◽  
Qi Zhou Wu ◽  
Wei Lin

A series of tests for low cycle fatigue were conducted on the tubular specimens for 304 stainless steel under variable amplitude and irregular axial-torsional loading. Rainflow cycle counting and linear damage rule are used to calculate fatigue damage and four approaches, e.g. SWT(Smith-Watson-Topper), KBM(Kandil-Brown-Miller), FS(Fatemi-Socie), and LKN(Lee-Kim-Nam) approach are employed to predict the fatigue life. The maximum shear strain plane, the maximum normal strain plane, and the maximum damage plane are considered as the critical plane, respectively. The effects of the choice of the critical plane on previous approaches are discussed. It is shown that comparing with the maximum shear/normal strain approach, the predictions are improved by using the maximum damage plane approach, part nonproportional paths for SWT, AV and part nonproportional paths for KBM, TV paths for FS. But for LKN, the prediction results are nonconservative for some paths than that of the maximum shear/normal strain approach.


2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


Sign in / Sign up

Export Citation Format

Share Document