scholarly journals Effect of Temperature Scheme on Microstructure and Mechanical Properties during Medium Carbon Steel Warm Processing

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Hong-Bin Li ◽  
Lifeng Fan ◽  
Lian-Sheng Chen

Influence of temperature scheme on the microstructure and properties variation of medium carbon steel warm deformation was studied with testing equipment of Gleeble-3500, SEM, TEM, EBSD, and φ350 reversal rolling mill. The results show that the temperature of 650 facilitates the formation of ultrafine homogeneous microstructure. The microstructure formed during temperature range of 650–700 °C is relative homogeneous and fine. The mechanical properties of warm rolling are influenced by the cooling modes. The lower cooling rate is benefit to the combination of strength and ductility.

2012 ◽  
Vol 535-537 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Jie Li ◽  
Yan Peng ◽  
Hong Min Liu ◽  
Li Zi Xiao ◽  
Su Fen Wang ◽  
...  

The warm compression experiment of medium carbon steel was conducted using the Gleeble-3500 thermal/mechanical simulator system. By the experiment, the warm deformation of medium carbon steel was studied within the temperature (500~700°C) and the strain rate (0.001~10s-1). The results indicate that the flow stress was increasing with the lowering temperature and the higher strain rate. And the stress-strain curves could be divided into four parts, including four stage of the Strain-Hardening, the First Softening, the Strong Softening, and the Steady Deformation. Dynamic recovery softening has little effect on the flow stress. The peak stress was caused by kink and fracture of the lamellar cementite. Strong softening stage was longer than other one, while its softening influence was stronger compared with hot deformation.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2021 ◽  
Vol 118 (6) ◽  
pp. 606
Author(s):  
Nandish Girishbhai Soni ◽  
Akash Ganesh Mahajan ◽  
Kaustubh Ramesh Kambale ◽  
Sandeep Prabhakar Butee

Fabrication with the in-situ formation of W2C reinforced medium carbon steel (MCS) MMC’s was attempted using W or WO3 and graphite addition to steel. The P/M route comprising milling, compaction and sintering at 1050 °C and 1120 °C respectively in 90% N2 + 10% H2 atmosphere was adopted. Both SEM and BET studies revealed the particle size to be around 100, 7 and 40 µm for MCS, W and WO3, respectively. A complete conversion of tungsten into tungsten semicarbide (W2C) was noted in XRD for the tungsten additions of ∼6, 9 and 12 wt.% with stoichiometrically balanced C (graphite) addition of 0, 0.2 and 0.4 wt.%. However, WO3 + C addition (balanced as above) revealed the partial conversion of WO3 to W2C. The peaks of Fe3C were observed only for MCS + W + C samples and not for MCS + WO3 + C samples in XRD. In SEM, the WO3 phase appeared porous and partially converted, whereas, W2C phase was dense. Sintered density improved for the addition of W, whereas it monotonically reduced for WO3 addition to MCS + C samples. Higher hardness, compressive strength, and wear resistance was noted for W addition than WO3 to MCS+C samples.


Sign in / Sign up

Export Citation Format

Share Document