scholarly journals Comparison of Energy Consumption and CO2 Emission for Three Steel Production Routes—Integrated Steel Plant Equipped with Blast Furnace, Oxygen Blast Furnace or COREX

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 364 ◽  
Author(s):  
Jiayuan Song ◽  
Zeyi Jiang ◽  
Cheng Bao ◽  
Anjun Xu

High CO2 emissions and energy consumption have greatly restricted the development of China’s iron and steel industry. Two alternative ironmaking processes, top gas recycling-oxygen blast furnace (TGR-OBF) and COREX®, can reduce CO2 emissions and coking coal consumption in the steel industry when compared with a conventional blast furnace (BF). To obtain parameters on the material flow of these processes, two static process models for TGR-OBF and COREX were established. Combining the operating data from the Jingtang steel plant with established static process models, this research presents a detailed analysis of the material flows, metallurgical gas generation and consumption, electricity consumption and generation, comprehensive energy consumption, and CO2 emissions of three integrated steel plants (ISP) equipped with the BF, TGR-OBF, and COREX, respectively. The results indicated that the energy consumption of an ISP with the TGR-OBF was 16% and 16.5% lower than that of a conventional ISP and an ISP with the COREX. Compared with a conventional ISP, the coking coal consumption in an ISP with the TGR-OBF and an ISP with the COREX were reduced by 39.7% and 100% respectively. With the International Energy Agency factor, the ISP with the TGR-OBF had the lowest net CO2 emissions, which were 10.8% and 35.0% lower than that of a conventional ISP and an ISP with the COREX. With the China Grid factor, the conventional ISP had the lowest net CO2 emissions—2.8% and 24.1% lower than that of an ISP with the TGR-OBF and an ISP with the COREX, respectively.

2015 ◽  
Vol 87 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Peng Jin ◽  
Zeyi Jiang ◽  
Cheng Bao ◽  
Yuanxiang Lu ◽  
Jianliang Zhang ◽  
...  

Energy ◽  
2018 ◽  
Vol 163 ◽  
pp. 144-150 ◽  
Author(s):  
Lianzhi Liu ◽  
Zeyi Jiang ◽  
Xinru Zhang ◽  
Yuanxiang Lu ◽  
Junkai He ◽  
...  

JOM ◽  
2017 ◽  
Vol 70 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Guang Wang ◽  
Yingli Liu ◽  
Zhenfeng Zhou ◽  
Jingsong Wang ◽  
Qingguo Xue

2016 ◽  
Vol 43 (6) ◽  
pp. 458-464 ◽  
Author(s):  
Long Chen ◽  
Qingguo Xue ◽  
Wentao Guo ◽  
Xuefeng She ◽  
Jingsong Wang

2012 ◽  
Vol 39 (5) ◽  
pp. 313-317 ◽  
Author(s):  
Y H Han ◽  
J S Wang ◽  
R Z Lan ◽  
L T Wang ◽  
X J Zuo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


2020 ◽  
Vol 92 (1) ◽  
pp. 2000326
Author(s):  
Wei Zhang ◽  
Jing Dai ◽  
Chengzhi Li ◽  
Xiaobing Yu ◽  
Zhengliang Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document