scholarly journals Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Joel Orre ◽  
Lena Sundqvist Ökvist ◽  
Axel Bodén ◽  
Bo Björkman

The blast furnace still dominates the production and supply of metallic units for steelmaking. Coke and coal used in the blast furnace contribute substantially to CO2 emissions from the steel sector. Therefore, blast furnace operators are making great efforts to lower the fossil CO2 emissions and transition to fossil-free steelmaking. In previous studies the use of pre-treated biomass has been indicated to have great potential to significantly lower fossil CO2 emissions. Even negative CO2 emission can be achieved if biomass is used together with carbon capture and storage. Blast furnace conditions will change at substantial inputs of biomass but can be defined through model calculations when using a model calibrated with actual operational data to define the key blast furnace performance parameters. To understand the effect, the modelling results for different biomass cases are evaluated in detail and the overall performance is visualised in Rist- and carbon direct reduction rate (CDRR) diagrams. In this study injection of torrefied biomass or charcoal, top charging of charcoal as well as the use of a combination of both methods are evaluated in model calculations. It was found that significant impact on the blast furnace conditions by the injection of 142 kg/tHM of torrefied biomass could be counteracted by also top-charging 30 kg/tHM of charcoal. With combined use of the latter methods, CO2-emissions can be potentially reduced by up to 34% with moderate change in blast furnace conditions and limited investments.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1117
Author(s):  
Lauri Holappa

The 2018 IPCC (The Intergovernmental Panel on Climate Change’s) report defined the goal to limit global warming to 1.5 °C by 2050. This will require “rapid and far-reaching transitions in land, energy, industry, buildings, transport, and cities”. The challenge falls on all sectors, especially energy production and industry. In this regard, the recent progress and future challenges of greenhouse gas emissions and energy supply are first briefly introduced. Then, the current situation of the steel industry is presented. Steel production is predicted to grow by 25–30% by 2050. The dominant iron-making route, blast furnace (BF), especially, is an energy-intensive process based on fossil fuel consumption; the steel sector is thus responsible for about 7% of all anthropogenic CO2 emissions. In order to take up the 2050 challenge, emissions should see significant cuts. Correspondingly, specific emissions (t CO2/t steel) should be radically decreased. Several large research programs in big steelmaking countries and the EU have been carried out over the last 10–15 years or are ongoing. All plausible measures to decrease CO2 emissions were explored here based on the published literature. The essential results are discussed and concluded. The specific emissions of “world steel” are currently at 1.8 t CO2/t steel. Improved energy efficiency by modernizing plants and adopting best available technologies in all process stages could decrease the emissions by 15–20%. Further reductions towards 1.0 t CO2/t steel level are achievable via novel technologies like top gas recycling in BF, oxygen BF, and maximal replacement of coke by biomass. These processes are, however, waiting for substantive industrialization. Generally, substituting hydrogen for carbon in reductants and fuels like natural gas and coke gas can decrease CO2 emissions remarkably. The same holds for direct reduction processes (DR), which have spread recently, exceeding 100 Mt annual capacity. More radical cut is possible via CO2 capture and storage (CCS). The technology is well-known in the oil industry; and potential applications in other sectors, including the steel industry, are being explored. While this might be a real solution in propitious circumstances, it is hardly universally applicable in the long run. More auspicious is the concept that aims at utilizing captured carbon in the production of chemicals, food, or fuels e.g., methanol (CCU, CCUS). The basic idea is smart, but in the early phase of its application, the high energy-consumption and costs are disincentives. The potential of hydrogen as a fuel and reductant is well-known, but it has a supporting role in iron metallurgy. In the current fight against climate warming, H2 has come into the “limelight” as a reductant, fuel, and energy storage. The hydrogen economy concept contains both production, storage, distribution, and uses. In ironmaking, several research programs have been launched for hydrogen production and reduction of iron oxides. Another global trend is the transfer from fossil fuel to electricity. “Green” electricity generation and hydrogen will be firmly linked together. The electrification of steel production is emphasized upon in this paper as the recycled scrap is estimated to grow from the 30% level to 50% by 2050. Finally, in this review, all means to reduce specific CO2 emissions have been summarized. By thorough modernization of production facilities and energy systems and by adopting new pioneering methods, “world steel” could reach the level of 0.4–0.5 t CO2/t steel and thus reduce two-thirds of current annual emissions.


2017 ◽  
Author(s):  
Keroboto B. Z. Ogutu ◽  
Fabio D'Andrea ◽  
Michael Ghil ◽  
Charles Nyandwi

Abstract. In the present Part 1 of a two-part paper, we formulate and study a simple Coupled Climate–Economy–Biosphere (CoCEB) model. This highly idealized model constitutes the basis of our integrated assessment approach to understanding the various feedbacks involved in the system. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via control of greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to evaluate hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement. In this paper, we consider investments in low-carbon technologies. Carbon capture and storage (CCS), along with deforestation reduction, will be dealt with in Part 2. The CoCEB model is highly flexible and transparent; as such, it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way. While many studies in the climate–economic literature treat abatement costs merely as an unproductive loss of income, this paper shows that mitigation costs do slow down economic growth over the next few decades, but only up to the mid-21st century or even earlier; growth reduction is compensated later on by having avoided negative impacts of climate change on the economy.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 863
Author(s):  
Lena Sundqvist Ökvist ◽  
Maria Lundgren

Metal production, and especially iron ore-based steel production, is characterized by high fossil CO2 emissions due of the use of coal and coke in the blast furnace. Steel companies around the world are striving to reduce the CO2 emissions in different ways, e.g., by use of hydrogen in the blast furnace or by production of iron via direct reduction. To partially replace fossil coal and coke with climate neutral bio-coal products that are adapted for use in the metal industry, e.g., at the blast furnace, is a real and important opportunity to significantly lower the climate impact in a short-term perspective. Top-charging of bio-coal directly to the blast furnace is difficult due to its low strength but can be facilitated if bio-coal is added as an ingredient in coke or to the mix when producing residue briquettes. Bio-coal can also be injected into the lower part of the blast furnace and thereby replace a substantial part of the injected pulverized coal. Based on research work within Swerim, where the authors have been involved, this paper will describe the opportunities and limitations of using bio-coal as a replacement for fossil coal as part of coke, as a constituent in residue briquettes, or as replacement of part of the injected pulverized coal. Results from several projects studying these opportunities via technical scale, as well as pilot and industrial scale experiments and modelling will be presented.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1268 ◽  
Author(s):  
Ana-Maria Cormos ◽  
Simion Dragan ◽  
Letitia Petrescu ◽  
Vlad Sandu ◽  
Calin-Cristian Cormos

Decarbonization of energy-intensive systems (e.g., heat and power generation, iron, and steel production, petrochemical processes, cement production, etc.) is an important task for the development of a low carbon economy. In this respect, carbon capture technologies will play an important role in the decarbonization of fossil-based industrial processes. The most significant techno-economic and environmental performance indicators of various fossil-based industrial applications decarbonized by two reactive gas-liquid (chemical scrubbing) and gas-solid CO2 capture systems are calculated, compared, and discussed in the present work. As decarbonization technologies, the gas-liquid chemical absorption and more innovative calcium looping systems were employed. The integrated assessment uses various elements, e.g., conceptual design of decarbonized plants, computer-aided tools for process design and integration, evaluation of main plant performance indexes based on industrial and simulation results, etc. The overall decarbonization rate for various assessed applications (e.g., power generation, steel, and cement production, chemicals) was set to 90% in line with the current state of the art in the field. Similar non-carbon capture plants are also assessed to quantify the various penalties imposed by decarbonization (e.g., increasing energy consumption, reducing efficiency, economic impact, etc.). The integrated evaluations exhibit that the integration of decarbonization technologies (especially chemical looping systems) into key energy-intensive industrial processes have significant advantages for cutting the carbon footprint (60–90% specific CO2 emission reduction), improving the energy conversion yields and reducing CO2 capture penalties.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


Sign in / Sign up

Export Citation Format

Share Document