scholarly journals Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 457
Author(s):  
Motseoa M. Lephatsi ◽  
Vanessa Meyer ◽  
Lizelle A. Piater ◽  
Ian A. Dubery ◽  
Fidele Tugizimana

In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.

2018 ◽  
Vol 25 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Sandra Fonseca ◽  
Dhanya Radhakrishnan ◽  
Kalika Prasad ◽  
Andrea Chini

Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits.


2021 ◽  
Vol 1 (2) ◽  
pp. 329-351
Author(s):  
Fahad Alotaibi ◽  
Mohamed Hijri ◽  
Marc St-Arnaud

Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.


2001 ◽  
Vol 28 (9) ◽  
pp. 975
Author(s):  
Kenneth J. O'Callaghan ◽  
Richard A. Dixon ◽  
Edward C. Cocking

This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 Arabidopsis thaliana L. has many features favoring its use as a model in studies of plant-growth-promoting rhizobacteria (PGPR), such as diazotrophs. Several niches are colonized in the root system of Arabidopsis, including xylem, and intact colonized roots can be observed microscopically without sectioning of tissues. Studies of plant genes involved in colonization are facilitated by the ease with which plants are transformed and by the availability of mutant lines and other accessions obtainable from stock centers. Lines of Arabidopsis carrying reporter gene fusions are helping to reveal the pattern of expression of previously cloned plant genes induced by rhizobacteria. Studies utilizing indole-3-acetic acid (IAA)-producing PGPR and Arabidopsis that contain an auxin-responsive GUS fusion suggest that plants perceive IAA released by bacteria in the rhizosphere. The role of flavonoids in the colonization of non-legumes is being assessed using transgenic Arabidopsis with altered flavonoid metabolism and using tt mutants, which lack functional versions of specific genes for flavonoid metabolism. Studies of plant defence and of stress responses are producing molecular data on plant genes induced by inoculation of Arabidopsis roots with non-pathogens.


Sign in / Sign up

Export Citation Format

Share Document