scholarly journals Effect of Process Parameters and Material Properties on Laser Micromachining of Microchannels

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 123 ◽  
Author(s):  
Matthew Benton ◽  
Mohammad Hossan ◽  
Prashanth Konari ◽  
Sanjeewa Gamagedara

Laser micromachining has emerged as a promising technique for mass production of microfluidic devices. However, control and optimization of process parameters, and design of substrate materials are still ongoing challenges for the widespread application of laser micromachining. This article reports a systematic study on the effect of laser system parameters and thermo-physical properties of substrate materials on laser micromachining. Three dimensional transient heat conduction equation with a Gaussian laser heat source was solved using finite element based Multiphysics software COMSOL 5.2a. Large heat convection coefficients were used to consider the rapid phase transition of the material during the laser treatment. The depth of the laser cut was measured by removing material at a pre-set temperature. The grid independent analysis was performed for ensuring the accuracy of the model. The results show that laser power and scanning speed have a strong effect on the channel depth, while the level of focus of the laser beam contributes in determining both the depth and width of the channel. Higher thermal conductivity results deeper in cuts, in contrast the higher specific heat produces shallower channels for a given condition. These findings can help in designing and optimizing process parameters for laser micromachining of microfluidic devices.

Author(s):  
Daniel Andres Rojas Perilla ◽  
Johan Grass Nuñez ◽  
German Alberto Barragan De Los Rios ◽  
Fabio Edson Mariani ◽  
Reginaldo Teixeira Coelho

Lab on a Chip ◽  
2014 ◽  
Vol 14 (18) ◽  
pp. 3447-3458 ◽  
Author(s):  
Koji Sugioka ◽  
Jian Xu ◽  
Dong Wu ◽  
Yasutaka Hanada ◽  
Zhongke Wang ◽  
...  

Femtosecond laser micromachining can directly fabricate three-dimensional (3D) microfluidic devices integrated with functional microcomponents in glass microchips.


2011 ◽  
Vol 214 ◽  
pp. 224-229 ◽  
Author(s):  
Qing Ming Chang ◽  
Chang Jun Chen ◽  
Xia Chen ◽  
Si Qian Bao

In this paper, a three-dimensional simulation model for laser-cladding processes of magnesium alloys is proposed. The applied loading is a moving heat source that depends on process parameters such as power density, laser beam diameter and scanning speed. The effects of process parameters on the melt pool are quantitatively discussed by numerical analysis. In these parameters, Marangoni force is the most important in affecting the molten metal flow and the contour of the melt pool. Both the length and depth of the melt pool vary sharply with temperature dependence of surface tension when the absolute value of this temperature dependence is at lower value.


2012 ◽  
Vol 229-231 ◽  
pp. 382-386
Author(s):  
Jian Bin Wang ◽  
Ji Shu Yin

The optimization research of process parameters for big power Laser cladding valve parts, is a research focus of modern surface hardening technology. The article discussed in detail for solving the optimum process parameters of Laser cladding for the selection approach of strategy of genetic algorithm, the quantitative relationship model was established between process parameters and the valve parts property using neural network method , which process parameters are laser power (P), scanning speed (V), powder feeding rate (G), scan spacing (D) and thickness ( ) etc., the best configuration program of Genetic Algorithm control parameters has been obtain by means of the parameters encoding、initial group setting、fitness function design,genetic operation design and algorithm control parameters setting. The optimization of process parameters is obtained to fit the Laser cladding technology by using genetic algorithm toolbox in the MATLAB environment, and the optimization goal of the valve parts property has also been achieved. Practice has proved that the optimal process parameters are correct by the genetic algorithm , and has a very good production practice guide.


2021 ◽  
Vol 309 ◽  
pp. 01147
Author(s):  
O.S. Fatoba ◽  
S.A. Akinlabi ◽  
O.M. Ikumapayi ◽  
E.T. Akinlabi

The study experimentally investigates the effects that Ytterbium Laser System process parameters, such as laser power, powder feed rate and traverse speed, has on the resultant microstructure of Ti- 6Al-4V grade 5 alloy. The deposition process was conducted employing a 3kW (CW) Ytterbium Laser System (YLS-2000-TR) machine, coaxial to the reinforcement powder. The laser scanning speed and power were varied between the intervals of 1-1.2 m/min and 900-1000 W. All other parameters kept constant where the rate of gas flow, the spot diameter, and the rate of powder flow. The microstructure was characterized by grain size and morphology by using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). The microstructural and mechanical properties were ascertained and the relationships with the process parameters were achieved. As a result of rapid cooling, the morphological features of α and α’ are distinctive and appear acicular. The structures appear coarsened. The metallurgy of the samples identifies with a morphology of multi-scale; with the coarsened alpha structures being reduced, plate-like, discrete and finer. The alpha grains closer to the fusion zone grew epitaxially, and the ones above these are acicular and lamellar. The results also indicated that slow traverse speeds increase the scale of columnar grains, while other process parameters were kept constant. Columnar microstructures became prevalent due to the dynamic temperature gradients/spikes, and sustainable cooling rates, pertaining to fabricating direct laser deposited Ti-6Al-4V grade 5 alloy. It was ascertained that by increasing the traverse speeds, the cooling rates increased, which resulted in a decrease in the width of the columnar grains.


Author(s):  
O. S. Fatoba ◽  
A. M. Lasisi ◽  
S. A. Akinlabi ◽  
E. T. Akinlabi ◽  
A. A. Adediran

Abstract The study experimentally investigates the effects of Ytterbium Laser System process parameters on the resultant microstructure of Ti-6Al-4V grade 5 alloy and reinforcement powders. The deposition process was conducted employing a 3 kW (CW) Ytterbium Laser System (YLS-2000-TR) machine, coaxial to the reinforcement powder. The laser scanning speed and power were varied between the intervals of 0.8–1.0 m/min and 900–1000 W. All other parameters kept constant were the rate of gas flow, the spot diameter, and the rate of powder flow. Metallurgical studies were conducted where all the samples microstructure was characterized by employing Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). The results showed that a minimum porosity was achieved at high laser power complemented with low powder feed rate. The microstructure formed was dominated by columnar grains and martensitic needle-like structures with a formation of beta phase. It was observed that the microstructure was influenced significantly by the two laser speed modes, and the laser power. The grain size and phase structure were influenced significantly by the laser power; increasing it had resulted in larger grains, and a coarser microstructure. The results also showed that the residual stresses of the optimized specimens were compressive.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Pedro Santos ◽  
Daniel Teixidor ◽  
Jesus Maudes ◽  
Joaquim Ciurana

A set of designed experiments, involving the use of a pulsed Nd:YAG laser system milling 316L Stainless Steel, serve to study the laser-milling process of microcavities in the manufacture of drug-eluting stents (DES). Diameter, depth, and volume error are considered to be optimized as functions of the process parameters, which include laser intensity, pulse frequency, and scanning speed. Two different DES shapes are studied that combine semispheres and cylinders. Process inputs and outputs are defined by considering the process parameters that can be changed under industrial conditions and the industrial requirements of this manufacturing process. In total, 162 different conditions are tested in a process that is modeled with the following state-of-the-art data-mining regression techniques: Support Vector Regression, Ensembles, Artificial Neural Networks, Linear Regression, and Nearest Neighbor Regression. Ensemble regression emerged as the most suitable technique for studying this industrial problem. Specifically, Iterated Bagging ensembles with unpruned model trees outperformed the other methods in the tests. This method can predict the geometrical dimensions of the machined microcavities with relative errors related to the main average value in the range of 3 to 23%, which are considered very accurate predictions, in view of the characteristics of this innovative industrial task.


Sign in / Sign up

Export Citation Format

Share Document