scholarly journals A Modified Duhem Model for Rate-Dependent Hysteresis Behaviors

Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 680 ◽  
Author(s):  
Gan ◽  
Mei ◽  
Chen ◽  
Zhou ◽  
Ge

Hysteresis behaviors are inherent characteristics of piezoelectric ceramic actuators. The classical Duhem model (CDM) as a popular hysteresis model has been widely used, but cannot precisely describe rate-dependent hysteresis behaviors at high-frequency and high-amplitude excitations. To describe such behaviors more precisely, this paper presents a modified Duhem model (MDM) by introducing trigonometric functions based on the analysis of the existing experimental data. The MDM parameters are also identified by using the nonlinear least squares method. Six groups of experiments with different frequencies or amplitudes are conducted to evaluate the MDM performance. The research results demonstrate that the MDM can more precisely characterize the rate-dependent hysteresis behaviors comparing with the CDM at high-frequency and high-amplitude excitations.


Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 183 ◽  
Author(s):  
Jinqiang Gan ◽  
Xianmin Zhang

Hysteresis behaviors exist in piezoelectric ceramics actuators (PCAs), which degrade the positioning accuracy badly. The classical Bouc–Wen (CB–W) model is mainly used for describing rate-independent hysteresis behaviors. However, it cannot characterize the rate-dependent hysteresis precisely. In this paper, a generalized Bouc–Wen (GB–W) model with relaxation functions is developed for both rate-independent and rate-dependent hysteresis behaviors of piezoelectric actuators. Meanwhile, the nonlinear least squares method through MATLAB/Simulink is adopted to identify the parameters of hysteresis models. To demonstrate the validity of the developed model, a number of experiments based on a 1-DOF compliant mechanism were conducted to characterize hysteresis behaviors. Comparisons of experiments and simulations show that the developed model can describe rate-dependent and rate-independent hysteresis more accurately than the classical Bouc–Wen model. The results demonstrate that the developed model is effective and useful.



Author(s):  
Máté Fazekas ◽  
Péter Gáspár ◽  
Balázs Németh

The article presents a velocity estimation algorithm through the wheel encoder-based odometry and wheel circumference identification. The motivation of the paper is that a proper model can improve the motion estimation in poor sensor performance cases. For example, when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the insufficient number of features, furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations, the wheel encoders can be an appropriate choice for state estimation. However, this type of estimation suffers from parameter uncertainty. In the paper, a wheel circumference identification is proposed to improve the velocity estimation. The algorithm listens to the incoming sensor measurements and estimates the wheel circumferences recursively with a nonlinear least squares method. The experimental results demonstrate that with the application of the identified parameters in the wheel odometry model, accurate velocity estimation can be obtained with high frequency. Thus, the presented algorithm can improve the motion estimation in the driver assistant functions of autonomous vehicles.



Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1126-1131 ◽  
Author(s):  
Melissa Whitten Bryan ◽  
Kenneth W. Holladay ◽  
Clyde J. Bergeron ◽  
Juliette W. Ioup ◽  
George E. Ioup

An airborne electromagnetic survey was performed over the marsh and estuarine waters of the Barataria basin of Louisiana. Two inversion methods were applied to the measured data to calculate layer thicknesses and conductivities: the modified image method (MIM) and a nonlinear least‐squares method of inversion using two two‐layer forward models and one three‐layer forward model, with results generally in good agreement. Uniform horizontal water layers in the near‐shore Gulf of Mexico with the fresher (less saline, less conductive) water above the saltier (more saline, more conductive) water can be seen clearly. More complex near‐surface layering showing decreasing salinity/conductivity with depth can be seen in the marshes and inland areas. The first‐layer water depth is calculated to be 1–2 m, with the second‐layer water depth around 4 m. The first‐layer marsh and beach depths are computed to be 0–3 m, and the second‐layer marsh and beach depths vary from 2 to 9 m. The first‐layer water conductivity is calculated to be 2–3 S/m, with the second‐layer water conductivity around 3 to 4 S/m and the third‐layer water conductivity 4–5 S/m. The first‐layer marsh conductivity is computed to be mainly 1–2 S/m, and the second‐ and third‐layer marsh conductivities vary from 0.5 to 1.5 S/m, with the conductivities decreasing as depth increases except on the beach, where layer three has a much higher conductivity, ranging up to 3 S/m.



2011 ◽  
Vol 462-463 ◽  
pp. 1164-1169
Author(s):  
Jing Xiang Yang ◽  
Ya Xin Zhang ◽  
Mamtimin Gheni ◽  
Ping Ping Chang ◽  
Kai Yin Chen ◽  
...  

In this paper, strength evaluations and reliability analysis are conducted for different types of PSSS(Periodically Symmetric Struts Supports) based on the FEA(Finite Element Analysis). The numerical models are established at first, and the PMA(Prestressed Modal Analysis) is conducted. The nodal stress value of all of the gauss points in elements are extracted out and the stress distributions are evaluated for each type of PSSS. Then using nonlinear least squares method, curve fitting is carried out, and the stress probability distribution function is obtained. The results show that although using different number of struts, the stress distribution function obeys the exponential distribution. By using nonlinear least squares method again for the distribution parameters a and b of different exponential functions, the relationship between number of struts and distribution function is obtained, and the mathematical models of the stress probability distribution functions for different supports are established. Finally, the new stress distribution model is introduced by considering the DSSI(Damaged Stress-Strength Interference), and the reliability evaluation for different types of periodically symmetric struts supports is carried out.



Geophysics ◽  
1972 ◽  
Vol 37 (2) ◽  
pp. 260-272 ◽  
Author(s):  
Leonidas C. Ocola

An iterative inversion method (Reframap) based on the kinematic properties of critically refracted waves is developed. The method is based on ray tracing and assumes homogeneous and isotropic media and ray paths confined to a vertical plane through each source‐detector pair. Unlike the earlier Profile or Time‐Term Methods, no restrictions are imposed on interface topography except that it be continuous almost everywhere (in the mathematical sense). As in the preexisting methods, more observations than unknowns are assumed. The algorithm and procedure, on which the Reframap Method is based, generate apparent dips for each source detector pair at the noncritical interfaces from the slope of a least‐squares line approximation to the interface functional in the neighborhood of each refraction point. In turn, the dip and path along the critical refractor is, at every iteration, pairwise approximated by a line through the critical refracting points. The incidence angles are computed recursively by Snell’s law. The solution of the overdetermined, nonlinear multiple refractor time‐distance system of simultaneous equations is sought by Marquardt’s algorithm for least‐squares estimation of critical refractor velocity and vertical thickness under each element.



1992 ◽  
Vol 42 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Jeanne Rudzki Small ◽  
Louis J. Libertini ◽  
Enoch W. Small


Sign in / Sign up

Export Citation Format

Share Document