scholarly journals In Situ Sputtering Silver Induction Electrode for Stable and Stretchable Triboelectric Nanogenerators

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1267
Author(s):  
Jinyuan Yao ◽  
Qi Zhang ◽  
Haodong Zhang ◽  
Mengqiu Li ◽  
Xichi Lu ◽  
...  

Triboelectric nanogenerators (TENG) can convert mechanical energy into electricity and exhibit unique advantages in the field of low-frequency and discrete energy harvesting. However, the interfacial state and stability between the triboelectric layer and electrode layer influence the output and applications of TENG. Herein, an in situ sputtering Ag process for fabricating induction electrodes is proposed to match with TENG. The sputtering Ag process is optimized by a variety of parameters, such as sputtering power, single-cycle time, number of cycles, cycle interval, and vacuum degree. In addition, the chemical state of Ag as a function of air placement is investigated, showing the sputtered Ag has excellent conductivity and stability. Moreover, four kinds of polymers are selected for fabricating TENGs based on the sputtered Ag induction electrodes, i.e., nylon 66, polyimide (PI), fluorinated ethylene propylene (FEP), and polydimethylsiloxane (PDMS), which shows great applicability. Considering the demand of flexible power suppliers, the sputtered Ag is integrated with a PDMS substrate, and shows good adhesion, flexibility, and ductility after severe deformation of the PDMS. Finally, the developed induction electrode processing technology is used in flexible TENG and shows great prospects in self-powered electronics for practical applications.

2019 ◽  
Vol 5 (4) ◽  
pp. eaav6437 ◽  
Author(s):  
Di Liu ◽  
Xing Yin ◽  
Hengyu Guo ◽  
Linglin Zhou ◽  
Xinyuan Li ◽  
...  

In situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m−2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7199-7208 ◽  
Author(s):  
Wei Zhong ◽  
Liang Xu ◽  
Xiaodan Yang ◽  
Wei Tang ◽  
Jiajia Shao ◽  
...  

Open-book-like triboelectric nanogenerators enable highly effective wave energy harvesting with enhanced power and charge output for self-powered marine systems.


2021 ◽  
Vol 12 ◽  
pp. 151-171
Author(s):  
Jing Han ◽  
Nuo Xu ◽  
Yuchen Liang ◽  
Mei Ding ◽  
Junyi Zhai ◽  
...  

The development of industry and of the Internet of Things (IoTs) have brought energy issues and huge challenges to the environment. The emergence of triboelectric nanogenerators (TENGs) has attracted wide attention due to their advantages, such as self-powering, lightweight, and facile fabrication. Similarly to paper and other fiber-based materials, which are biocompatible, biodegradable, environmentally friendly, and are everywhere in daily life, paper-based TENGs (P-TENGs) have shown great potential for various energy harvesting and interactive applications. Here, a detailed summary of P-TENGs with two-dimensional patterns and three-dimensional structures is reported. P-TENGs have the potential to be used in many practical applications, including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics.


2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Yuzhou Wang ◽  
Ali Matin Nazar ◽  
Jiajun Wang ◽  
Kequan Xia ◽  
Delin Wang ◽  
...  

Triboelectric nanogenerators (TENG), which convert mechanical energy (such as ocean waves) from the surrounding environment into electrical energy, have been identified as a green energy alternative for addressing the environmental issues resulting from the use of traditional energy resources. In this experimental design, we propose rolling spherical triboelectric nanogenerators (RS-TENG) for collecting energy from low-frequency ocean wave action. Copper and aluminum were used to create a spherical frame which functions as the electrode. In addition, different sizes of spherical dielectric (SD1, SD2, SD3, and SD4) were developed in order to compare the dielectric effect on output performance. This design places several electrodes on each side of the spherical structure such that the dielectric layers are able to move with the slightest oscillation and generate electrical energy. The performance of the RS-TENG was experimentally investigated, with the results indicating that the spherical dielectrics significantly impact energy harvesting performance. On the other hand, the triboelectric materials (i.e., copper and aluminum) play a less important role. The copper RS-TENG with the largest spherical dielectrics is the most efficient structure, with a maximum output of 12.75 V in open-circuit and a peak power of approximately 455 nW.


Nano Energy ◽  
2019 ◽  
Vol 66 ◽  
pp. 104117 ◽  
Author(s):  
Yu Bai ◽  
Liang Xu ◽  
Chuan He ◽  
Laipan Zhu ◽  
Xiaodan Yang ◽  
...  

Author(s):  
Hongxin Hong ◽  
Xiya Yang ◽  
Hui Cui ◽  
Duo Zheng ◽  
Haiyang Wen ◽  
...  

The rapid development of Internet of Things brings increasing attention on the harvesting of distributed sustainable energy. Recently, study on triboelectric nanogenerators (TENG) in collecting low-frequency and irregular amplitude ocean...


Nanoscale ◽  
2021 ◽  
Author(s):  
Junwei Zhao ◽  
Yujiang Wang ◽  
Xiaojiang Song ◽  
Anqi Zhou ◽  
Yunfei Ma ◽  
...  

As a new nanotechnology of mechanical energy harvesting and self-powered sensing, triboelectric nanogenerator (TENG) has been explored as a new path of using various low-frequency disordered mechanical energies in the...


2020 ◽  
Vol 11 ◽  
pp. 1394-1401
Author(s):  
Liangyi Zhang ◽  
Huan Li ◽  
Yiyuan Xie ◽  
Jing Guo ◽  
Zhiyuan Zhu

Recently, there has been growing interest in triboelectric nanogenerators (TENGs) that can effectively convert various forms of mechanical energy input into electrical energy. In the present study, a novel Teflon/vitamin B1 powder based triboelectric nanogenerator (TVB-TENG) is proposed. Paper is utilized as a supporting platform for triboelectrification between a commercial Teflon tape and vitamin B1 powder. The measured open-circuit voltage was approximately 340 V. The TVB-TENG can be applied as a humidity sensor and exhibits a linear and reversible response to the relative humidity of the environment. Moreover, the change in relative humidity is also indicated by the change in luminosity of a set of light-emitting diodes (LEDs) integrated in the TVB-TENG system. The TVB-TENG proposed in this study illustrates a cost-effective method for portable power supply and sensing devices.


Sign in / Sign up

Export Citation Format

Share Document