scholarly journals Modeling and Simulation of the Surface Generation Mechanism of a Novel Low-Pressure Lapping Technology

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1510
Author(s):  
Ninghui Yu ◽  
Lihua Li ◽  
Chea-su Kee

Aluminum alloy (Al6061) is a common material used in the ultraprecision area. It can be machined with a good surface finish by single-point diamond turning (SPDT). Due to the material being relatively soft, it is difficult to apply post-processing techniques such as ultraprecision lapping and ultraprecision polishing, as they may scratch the diamond-turned surface. As a result, a novel low-pressure lapping method was developed by our team to reduce the surface roughness. In this study, a finite element model was developed to simulate the mechanism of this novel lapping technology. The simulation results were compared with the experimental results so as to gain a better understanding of the lapping mechanism.

2014 ◽  
Vol 625 ◽  
pp. 742-747
Author(s):  
C.H. Mak ◽  
C.F. Cheung ◽  
M.J. Ren ◽  
L.B. Kong ◽  
S. To

This paper presents a study of cutting strategies on the surface generation in single-point diamond turning of micro V-groove patterns on precision roller drums. An aluminium precision roller drum with a diameter 250mm and 100 long was diamond turned with a V-groove pattern. A series of cutting experiments were designed to study the effect of the variation of various cutting parameters and cutting tool paths on the surface quality in diamond turning of the precision roller drum. The parameters under investigation included the depth of cut, number of steps and the depth for each cut when diamond turning V-grooves on the cylindrical surface of a workpiece. The measurement result indicates that the surface quality of V-grooves machined on the precision roller drums is affected by cutting strategies. The optimal cutting strategy for machining a V-groove pattern on a precision drum with 5µm depth was obtained.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 4 ◽  
Author(s):  
Jie Xiong ◽  
Hao Wang ◽  
Guoqing Zhang ◽  
Yanbing Chen ◽  
Jiang Ma ◽  
...  

Pd40Ni10Cu30P20 bulk metallic glass (BMG) is widely used in industrial fields due to its excellent oxidation resistance, corrosion resistance, and thermal stability. However, the lack of research on the machinability and cutting performance of BMG using single-point diamond turning (SPDT) limits its application for engineering manufacturing. In the present research, a series of turning experiments were carried out under different cutting parameters, and the machinability reflected by the quality of machined surface, chip morphology, and tool wear were analyzed. Based on the oxidation phenomenon of the machined surface, a molecular dynamics (MD) simulation was conducted to study the mechanism and suppression of the machined surface oxidation during the cutting. The results show that: (1) The Pd-based BMG had good machinability, where the machined surface roughness could go down to 3 nm; (2) irregular micro/nanostructures were found along the tool path on the outer circular region of the machined surface, which greatly affected the surface roughness; and (3) the cutting heat softened the workpiece material and flattened the tool marks under surface tension, which improved the surface quality. This research provides important theoretical and technical support for the application of BMG in optical mold manufacturing.


2010 ◽  
Vol 126-128 ◽  
pp. 148-153
Author(s):  
Weng Seng Fong ◽  
Yee Ming Wan ◽  
David Lee Butler

Abrasive flow machining (AFM) has become one of the more attractive finishing processes used in applications such as deburring, recast layer removal, radiusing as well as for polishing. Recently, there has been renewed interest in developing low cost/ low pressure modular AFM systems and media. The media which contains the abrasive particles is the key element in ensuring efficient material removal and a good surface finish. In this paper, the authors will present their work on the development and characterization of a new abrasive media formulation.


2011 ◽  
Vol 314-316 ◽  
pp. 984-987
Author(s):  
Qing Liang Zhao ◽  
Jun Yun Chen ◽  
Jian Luo

The swelling effect is an important factor to affect surface generation in SPDT. Face cutting experiments are conducted for copper, aluminum alloy and electroless nickel phosphorus to analyze the swelling effect including the relationship between it and cutting parameters as well as effect of material property. How the material swelling affects surface roughness is also studied in this paper. The results indicate that the swelling effect is influenced by spindle speed and material property more remarkably when compared to feed rate and depth of cut. In addition, a softer and more ductile material will lead to a stronger material recovery, a lower swelling proportion, a lower tool mark height and a smoother machined surface. The result reveals that the swelling effect must be considered when predicting surface roughness in SPDT


2006 ◽  
Vol 532-533 ◽  
pp. 989-992
Author(s):  
Chi Fai Cheung ◽  
Wing Bun Lee ◽  
Suet To

This paper presents a multi-spectrum analysis method for the characterization of the surface generation in single-point turning of brittle single crystals. The features on the diamond turned surfaces were extracted and analysed by the power spectrum analysis of the surface roughness profiles measured at a number radial sections of the workpiece. By the analysis of the variation of the spectral patterns in the multi-spectrum plots, the surface roughness and materials effect on surface generation are found to be strongly related to the power spectrum. This provides an important means to explain quantitatively the effect of factors affecting the surface generation in diamond turning brittle crystals.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yahui Nie ◽  
Yinfei Du ◽  
Zhuo Xu ◽  
Zimiao Zhang ◽  
Yang Qi

Freeform optics are defined as nonrotational symmetric optical surfaces in the manufacturing industry. Freeform optics are extensively applied to many areas in order to improve system performance. Fast tool servo (FTS) assisting single-point diamond turning technology has high application prospects in freeform optics machining. This paper discusses the interpolation algorithm for tool path generation of FTS through the application of a radial basis function (RBF) algorithm. For this purpose, a positive definite RBF with compact support was employed as the interpolant. The existence is mathematically proven. Numerical simulations were performed to compare the performances of the RBF algorithm and commonly used algorithms for satisfying the requirements of existence, smoothness, and accuracy. Machining experiments were also conducted to validate the applicability of the algorithm. The simulation results showed that the RBF interpolation algorithm outperformed other algorithms in terms of smoothness. The RBF algorithm also provided the highest interpolation accuracy. Furthermore, the RBF interpolation algorithm exhibited the highest accuracy for error distribution, with large errors distributed mainly in transition areas. The machining results were also in general agreement with the simulation results although obvious practical errors were observed. Overall, RBF interpolation can provide higher accuracy and better smoothness in the tool path generation of FTS.


Sign in / Sign up

Export Citation Format

Share Document