A Study of Cutting Strategy in Single-Point Diamond Turning of Micro V-Groove Patterns on Precision Roller Drums

2014 ◽  
Vol 625 ◽  
pp. 742-747
Author(s):  
C.H. Mak ◽  
C.F. Cheung ◽  
M.J. Ren ◽  
L.B. Kong ◽  
S. To

This paper presents a study of cutting strategies on the surface generation in single-point diamond turning of micro V-groove patterns on precision roller drums. An aluminium precision roller drum with a diameter 250mm and 100 long was diamond turned with a V-groove pattern. A series of cutting experiments were designed to study the effect of the variation of various cutting parameters and cutting tool paths on the surface quality in diamond turning of the precision roller drum. The parameters under investigation included the depth of cut, number of steps and the depth for each cut when diamond turning V-grooves on the cylindrical surface of a workpiece. The measurement result indicates that the surface quality of V-grooves machined on the precision roller drums is affected by cutting strategies. The optimal cutting strategy for machining a V-groove pattern on a precision drum with 5µm depth was obtained.

2014 ◽  
Vol 633-634 ◽  
pp. 615-619
Author(s):  
Su Juan Wang ◽  
Su Et To ◽  
Xin Chen ◽  
Jian Qun Liu

This paper studies the development of cutting strategy in the fabrication of freeform surface in ultra-precision raster milling (UPRM). The tasks of developing cutting strategy in freeform machining involve in the selection of cutting parameters and the planning of tool paths. An integrated system is built in this study to develop the cutting strategy, automatically generate NC program, simulate the tool paths and machining process, as well as make predictions for the machining time and the surface quality of the raster milled freeform surface. Experiment is conducted to verify the developed system and the experimental results show that the system is applicable for the machining of freeform surface in UPRM. This study therefore contributes to avoiding the need to conduct expensive and time consuming trial cutting tests to ensure the product quality in the freeform machining.


2016 ◽  
Vol 863 ◽  
pp. 111-115 ◽  
Author(s):  
Saiful Bahri Mohamed ◽  
Wan Noor Fatihah Mohamad ◽  
Martini Muhamad ◽  
Jailani Ismail ◽  
Been Seok Yew ◽  
...  

The use of hybrid composite materials has increased due to their special mechanical and physical properties. However, machining of these materials is extremely difficult due to non-homogeneous, anisotropic and highly abrasive characteristics. The performance of machined surface quality of CFRP/Al2024 was described using two level factorial methodology. This research aims to study the interaction effects and significant factors of cutting parameters on the surface quality and optimise the cutting parameter for the surface quality of CFRP/Al2024 1μm to 2μm. The trimming process test was performed under dry conditions using burr tools 6mm diameter of end mills. The factors investigated were spindle speed (N), feed rate (fr) and depth of cut (dc), meanwhile profile roughness parameters (Ra) of CFRP and Al2024 were the response variables. Results show that the best estimated value of fr should be 500 mm/min to 530 mm/min, N is between and 2313.870 rpm to 2336.042 rpm. For both responses, N is the most significant effect followed by fr and dc.


2007 ◽  
Vol 339 ◽  
pp. 78-83 ◽  
Author(s):  
Jing He Wang ◽  
Shen Dong ◽  
H.X. Wang ◽  
Ming Jun Chen ◽  
Wen Jun Zong ◽  
...  

The method of single point diamond turning is used to machine KDP crystal. A regression analysis is adopted to construct a prediction model for surface roughness and cutting force, which realizes the purposes of pre-machining design, prediction and control of surface roughness and cutting force. The prediction model is utilized to analyze the influences of feed, cutting speed and depth of cut on the surface roughness and cutting force. And the optimal cutting parameters of KDP crystal on such condition are acquired by optimum design. The optimum estimated values of surface roughness and cutting force are 7.369nm and 0.15N, respectively .Using the optimal cutting parameters, the surface roughness Ra, 7.927nm, and cutting force, 0.19N, are obatained.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


Author(s):  
Deepak Ravindra ◽  
John Patten

Silicon carbide (SiC) is one of the advanced engineered ceramics materials designed to operate in extreme environments. One of the main reasons for the choice of this material is due to its excellent electrical, mechanical and optical properties that benefit the semiconductor, MEMS and optoelectronic industry respectively. Manufacture of this material is extremely challenging due to its high hardness, brittle characteristics and poor machinability. Severe fracture can result when trying to machine SiC due to its low fracture toughness. However, from past experience it has been proven that ductile regime machining of silicon carbide is possible. The main goal of the subject research is to improve the surface quality of a chemically vapor deposited (CVD) polycrystalline SiC material to be used in an optics device such as a mirror. Besides improving the surface roughness of the material, the research also emphasized increasing the material removal rate (MRR) and minimizing the diamond tool wear. The surface quality was improved using a Single Point Diamond Turning (SPDT) machining operation from 1158nm to 88nm (Ra) and from 8.49μm to 0.53μm (Rz; peak-to-valley).


2011 ◽  
Vol 314-316 ◽  
pp. 984-987
Author(s):  
Qing Liang Zhao ◽  
Jun Yun Chen ◽  
Jian Luo

The swelling effect is an important factor to affect surface generation in SPDT. Face cutting experiments are conducted for copper, aluminum alloy and electroless nickel phosphorus to analyze the swelling effect including the relationship between it and cutting parameters as well as effect of material property. How the material swelling affects surface roughness is also studied in this paper. The results indicate that the swelling effect is influenced by spindle speed and material property more remarkably when compared to feed rate and depth of cut. In addition, a softer and more ductile material will lead to a stronger material recovery, a lower swelling proportion, a lower tool mark height and a smoother machined surface. The result reveals that the swelling effect must be considered when predicting surface roughness in SPDT


2020 ◽  
Vol 853 ◽  
pp. 18-23
Author(s):  
F.A Oyekunle ◽  
Khaled Abou-El-Hossein

Single-point diamond turning is a technique of ultra-high precision machining that provides excellent quality of surface for mirrors, spherical and aspherical components. In SPDT just like other machining processes, cutting fluid plays an important role in metal removal and tool condition which largely influence the surface of diamond turned surface. In this paper, the surface roughness of diamond turned RSA 431 was studied by investigating the effect of kerosene mist and water as cutting fluids. Higher order response surface of Box-Behnken design was generated using fewer runs than a normal factorial technique. The cutting parameters that were varied for both experiments were depth of cut, feed and, speed. Taylor Hobson PGI Dimension XL surface Profilometer was used to measure the surface roughness after each experimental run. The results show that water when used as cutting fluid during machining, produces better surface roughness than kerosene mist. Predictive models for surface roughness were developed for each experiment. Values from the Mean Absolute Percent Error (MAPE) was used to evaluate and compare the two models to determine the accuracy. RSM also proved to be a better methodology of predicting surface roughness.


2012 ◽  
Vol 201-202 ◽  
pp. 594-597
Author(s):  
Wei Wei Wang ◽  
Dong Hu

In order to recognize the integrity of workpiece surface texture, this paper introduces the method of mended texture spectrum based on workpiece surface texture. The workpiece surface texture images can be described based on analyzing the influence of cutting parameters on the surface texture. The experimental results indicate that the cutting parameters have a great effect on the integrity of workpiece surface texture. In other words, the effect of cutting speed is evident, that of feed speed, depth of cut to a less extent. In addition, the integrity of texture changes greatly in short time with the increase of cutting parameters.


2015 ◽  
Vol 1105 ◽  
pp. 93-98
Author(s):  
Adnan I.O. Zaid ◽  
S.M.A. Al-Qawabah

Shape memory alloys (SMAs) are now widely used in many industrial and engineering applications e.g. in aircrafts, space vehicles, robotics and actuators. However the available literature reveals that little or no work is published on the machinability of these alloys. In this paper, the effect of the main cutting parameters namely: cutting speed, depth of cut and feed rate on the surface quality of the machined surface of the Cu-Zn-Al shape memory alloy both in the cast and after direct extrusion using a CNC milling is investigated. The cutting speed was varied from 750 to 2000 rpm , the depth of cut was varied from 1 to 4 mm and the feed rate was varied from 100 to 250 mm/min. Furthermore, the general microstructure, the mechanical behavior and hardness of the Cu-Zn-Al shape memory alloy both in the cast and after direct extrusion are determined and discussed. It was found that the best achieved surface quality in this SMA, machined within the different investigated cutting conditions is 0.13 microns at cutting speed of 750 rpm, 1 mm depth of cut and 150 mm/min. feed rate, which is better than the surface quality achieved in other materials at the same cutting conditions.


2006 ◽  
Author(s):  
Jing Hou ◽  
Jianfeng Zhang ◽  
Jinlin Chen ◽  
Xiaoli Zhang ◽  
Dezhi Hu

Sign in / Sign up

Export Citation Format

Share Document