scholarly journals Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Xiaowen Wang ◽  
Zhen Wang ◽  
Wenya Zhai ◽  
Fengyun Wang ◽  
Zhixing Ge ◽  
...  

Tissue engineering provides a powerful solution for current organ shortages, and researchers have cultured blood vessels, heart tissues, and bone tissues in vitro. However, traditional top-down tissue engineering has suffered two challenges: vascularization and reconfigurability of functional units. With the continuous development of micro-nano technology and biomaterial technology, bottom-up tissue engineering as a promising approach for organ and tissue modular reconstruction has gradually developed. In this article, relevant advances in living blocks fabrication and assembly techniques for creation of higher-order bioarchitectures are described. After a critical overview of this technology, a discussion of practical challenges is provided, and future development prospects are proposed.

2014 ◽  
Vol 14 (01) ◽  
pp. 1430001 ◽  
Author(s):  
JIANKANG HE ◽  
FENG XU ◽  
YAXIONG LIU ◽  
ZHONGMIN JIN ◽  
DICHEN LI

The fabrication of vascularized parenchymal organs to alleviate donor shortage in organ transplantation is the holy grail of tissue engineering. However, conventional tissue-engineering strategies have encountered huge challenges in recapitulating complex structural organization of native organs (e.g., orderly arrangement of multiple cell types and vascular network), which plays an important role in engineering functional vascularized parenchymal constructs in vitro. Recent developments of various advanced tissue-engineering strategies have exhibited great promise in replicating organ-specific architectures into artificial constructs. Here, we review the recent advances in top-down and bottom-up strategies for the fabrication of vascularized parenchymal constructs. We highlight the fabrication of microfluidic scaffolds potential for nutrient transport or vascularization as well as the controlled multicellular arrangement. The advantages as well as the limitations associated with these strategies will be discussed. It is envisioned that the combination of microfluidic concept in top-down strategies and multicellular arrangement concept in bottom-up strategies could potentially generate new insights for the fabrication of vascularized parenchymal organs.


2012 ◽  
Vol 108 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Yann Thibaudier ◽  
Marie-France Hurteau

Propriospinal pathways are thought to be critical for quadrupedal coordination by coupling cervical and lumbar central pattern generators (CPGs). However, the mechanisms involved in relaying information between girdles remain largely unexplored. Using an in vitro spinal cord preparation in neonatal rats, Juvin and colleagues ( Juvin et al. 2012 ) have recently shown sensory inputs from the hindlimbs have greater influence on forelimb CPGs than forelimb sensory inputs on hindlimb CPGs, in other words, a bottom-up control system. However, results from decerebrate cats suggest a top-down control system. It may be that both bottom-up and top-down control systems exist and that the dominance of one over the other is task or context dependent. As such, the role of sensory inputs in controlling quadrupedal coordination before and after injury requires further investigation.


2020 ◽  
Vol MA2020-01 (6) ◽  
pp. 648-648
Author(s):  
Anton V Naumov ◽  
Md Tanvir Hasan ◽  
Elizabeth Campbell ◽  
Ching-Wei Lin ◽  
Angela M. Belcher

2016 ◽  
Vol 4 (42) ◽  
pp. 6773-6786 ◽  
Author(s):  
Venu Kesireddy ◽  
F. Kurtis Kasper

This review provides an outline of various approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering and classifies them broadly under two distinct schemes; namely, the top-down approach and the bottom-up approach.


2012 ◽  
Vol 1418 ◽  
Author(s):  
Chong Wang ◽  
Min Wang ◽  
Xiao-Yan Yuan

ABSTRACTElectrospinning is a versatile technique for fabricating three-dimensional (3D) nanofibrous scaffolds and the scaffolds have been found to elicit desirable cellular behavior for tissue regeneration because the nanofibrous structures mimic the nanofibrous extracellular matrix (ECM) of biological tissues. From the material point of view, the ECM of bone is a nanofibrous nanocomposite consisting of an organic matrix (mainly collagen) and inorganic bone apatite nanoparticles. Therefore, for bone tissue engineering scaffolds, it is natural to construct nanofibrous nanocomposites having a biodegradable polymer matrix and nanosized bioactive bioceramics. Our previous studies demonstrated: (1) electrospun nanocomposite fiber loaded with calcium phosphate (Ca-P) were osteoconductive and could promote osteoblastic cell proliferation and differentiation better than pure polymer fibers; (2) The controlled release of recombinant human bone morphogenetic protein (rhBMP-2) from scaffolds provided the scaffolds with desired osteoinductivity. In the current investigation, novel bicomponent scaffolds for bone tissue engineering were produced using our established dual-source dual-power electrospinning technique to achieve both osteoconductivity and osteoinductivity. In the bicomponent scaffolds, one fibrous component was electrospun Ca-P/PLGA nanocomposite fibers and the other component was emulsion electrospun PDLLA nanofibers incorporated with rhBMP-2. Through electrospinning optimization, both fibers were evenly distributed in bicomponent scaffolds. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled using multiple syringes. The structure and morphology of mono- and bicomponent scaffolds were examined. The in vitro release of rhBMP-2 from mono- and bicomponent scaffolds showed different release amount but similar release profile, exhibiting an initial burst release. Blending PDLLA with polyethylene glycol (PEG) could reduce the initial burst release of rhBMP-2.


2021 ◽  
Vol 22 (8) ◽  
pp. 3971
Author(s):  
Jianhua Zhang ◽  
Esther Wehrle ◽  
Marina Rubert ◽  
Ralph Müller

The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.


Sign in / Sign up

Export Citation Format

Share Document