scholarly journals Novel High-Capacitance-Ratio MEMS Switch: Design, Analysis and Performance Verification

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 390 ◽  
Author(s):  
Ke Han ◽  
Xubing Guo ◽  
Stewart Smith ◽  
Zhongliang Deng ◽  
Wuyu Li

This paper proposes a novel high-capacitance-ratio radio frequency micro-electromechanical systems (RF MEMS) switch. The proposed RF MEMS mainly consists of serpentine flexure MEMS metallic beam, comprised of coplanar waveguide (CPW) transmission line, dielectric and metal-insulator-metal (MIM) floating metallic membrane. Comparing the proposed high-capacitance-ratio MEMS switch with the ones in available literature, an acceptable insertion loss insulation, acceptable response time and high capacitance ratio (383.8) are achieved.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.


Author(s):  
S Girish Gandhi, I Govardhani, M Venkata Narayana, K Sarat Kumar

This is an attempt to compare three different shunt configured RF MEMS switches which offers a choice for applications in satellite and antennas. Advanced RF communication domain demands for design and modeling of RF MEMS switch which provides extremely reduced pull-in voltage, better isolation, low insertion loss, and with greater reliability. The proposed work manages with comparison of design modeling and performance of three different shunt configured RF MEMS switches. The proposed shunt configured RF MEMS switches are designed with different dimensions with different meandering techniques with perforations on beam structure helps in reducing the amount of voltage required for actuation of switch which is known as pull-in voltage. Comparative study of three different RF MEMS switches which involves in conducting electromechanical analysis are carried out using COMSOL multi physics tool and electromagnetic analysis are carried out using HFSS tool. Moreover the comparative study involves in comparing the values of pull-in voltage, switching time and capacitance, stress, insertion loss, return loss and isolation of three different RF MEMS switches. Proposed first switch model derives pull-in voltage of 16.9v with the switching time of 1.2µs, isolation of 47.70 dB at 5GHz and insertion loss of 0.0865 dB and return loss of 41.55 dB. Proposed second switch model derives pull-in voltage of 18.5v with the switching time of 2.5µs, isolation of 37.20 dB at 8GHz and insertion loss of 0.1177 dB and return loss of 38.60 dB. Proposed third switch model delivers pull-in voltage of 18.75v with the switching time of 2.56µs, isolation of 44.1552 dB at 8GHz and insertion loss of 0.0985 dB and return loss of 42.1004 dB.


2020 ◽  
Vol 26 (12) ◽  
pp. 3813-3820
Author(s):  
K. Srinivasa Rao ◽  
K. Vasantha ◽  
K. Girija Sravani

2019 ◽  
Vol 26 (2) ◽  
pp. 345-352 ◽  
Author(s):  
K. Girija Sravani ◽  
K. Srinivasa Rao ◽  
D. Prathyusha ◽  
B. V. Sai Kiran ◽  
B. Siva Kumar ◽  
...  

The present paper aimed at designing, optimizing, and simulating the RF MEMS Switch which is stimulated electrostatically. The design of the switch is located on the CoplanarWaveguide (CPW) transmission line. The pull-in voltage of the switch was 2V and the axial residual stress of the proposed design was obtained at 23MPa. In order to design and optimize the geometric structure of the switch, the desired model was extracted based on the objective functions of the actuation voltage and the return loss up-state and also the isolation down-state using the mathematical programming. Moreover, the model was solved by the NSGA-II meta-heuristic algorithm in MATLAB software. In addition, the design requirements and the appropriate levels for designing the switch were obtained by presenting the Pareto front from the beam actuation voltage and also the return loss up-state and isolation down-state. Finally, the RF parameters of the switch were calculated as S11=-2.54dB and S21=-33.18dB at the working frequency of 40GHz by extracting the appropriate parameters of the switch design through simulating a switch designed by the COMSOL Multiphysics software 4.4a and the advanced design system (ADS).


Sign in / Sign up

Export Citation Format

Share Document