scholarly journals Optimization of shunt capacitive RF MEMS switch by using NSGA-II algorithm and uti-liti algorithm

The present paper aimed at designing, optimizing, and simulating the RF MEMS Switch which is stimulated electrostatically. The design of the switch is located on the CoplanarWaveguide (CPW) transmission line. The pull-in voltage of the switch was 2V and the axial residual stress of the proposed design was obtained at 23MPa. In order to design and optimize the geometric structure of the switch, the desired model was extracted based on the objective functions of the actuation voltage and the return loss up-state and also the isolation down-state using the mathematical programming. Moreover, the model was solved by the NSGA-II meta-heuristic algorithm in MATLAB software. In addition, the design requirements and the appropriate levels for designing the switch were obtained by presenting the Pareto front from the beam actuation voltage and also the return loss up-state and isolation down-state. Finally, the RF parameters of the switch were calculated as S11=-2.54dB and S21=-33.18dB at the working frequency of 40GHz by extracting the appropriate parameters of the switch design through simulating a switch designed by the COMSOL Multiphysics software 4.4a and the advanced design system (ADS).

Author(s):  
Bokkisam Venkata Sai Sailaja ◽  
Ketavath Kumar Naik

Abstract In this paper, non-uniform meandered line shunt capacitive RF-MEMS switch is presented at an elliptical patch etched with a split-ring resonator (SRR) for satellite communication applications. The non-uniform meander line shunt capacitive is a fixed-fixed type of RF-MEMS switch that is introduced in this model antenna. The proposed antenna design is resonated at 10.46 GHz with the return loss of −37.6 dB. The performance evolution of the proposed antenna design is evaluated with and without integrated RF-MEMS switch on the proposed antenna SRR. It is observed that the proposed model at the ON-state switch resonates at 10.57 GHz frequency with the return loss of −30 dB. Similarly, at the OFF-state switch, it resonates at 10.53 GHz frequency with the return loss of −43 dB. Al3N4 (aluminum nitride) is used for the switch as a dielectric material, hence the switch attains higher isolation. The actuation voltage of 7.9 V is required for the switch to actuate from ON to OFF state. The switch attains minimum insertion and return loss which is discussed in further sections. The proposed antenna is fabricated and tested by a vector network analyzer; there is a good agreement between the simulated and measured results.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 34
Author(s):  
K Vikas ◽  
S Sunithamani ◽  
M Yagnika ◽  
S Siva Krishna ◽  
S Avanthi

In this paper we have designed and analyzed shunt capacitive fixed-fixed RF MEMS switch to maintain low actuation voltage. The pull - in voltage of the proposed switch is 7.7V for 2 um air gap. The electromagnetic analysis for the designed structure is, return loss is -23dB in the range of 1-40 GHz, insertion loss is -0.04dB at a frequency range of 1-40 GHz and isolation is - 38.5dB obtained at a frequency of 23.5 GHz. Mechanical analysis for the designed structure is also performed using FEM tool.


In this paper a shunt type RF MEMS switch design and analysis for tunable applications is presented. Switch works based on the electrostatic actuation principle. Theoretical calculated Switch parameters are compared with the electromechanical and electromagnetic simulation results. The effect of various materials like conductor and dielectrics & parameters like airgap, beam width on the electromechanical parameters of the switch is analyzed to get low pull-in voltage, high switching speed, better capacitance ratio, return loss, insertion loss, and isolation loss. The switch up and down state capacitance are 40.9fF and 4.45pF respectively. Down to up state capacitance ratio of this switch is 108.69. The designed switch has an actuation voltage of 32V. RF performance is simulated from 1-10GHz. In ON state switch has return loss of -35dB, insertion loss of -0.1dB. In the OFF-state switch has return loss of -1dB and an isolation loss of -11dB.


2020 ◽  
Vol 12 ◽  
Author(s):  
Pampa Debnath ◽  
Ujjwal Mondal ◽  
Arpan Deyasi

Aim:: Computation of loss factors for one-bit RF MEMS switch over Ku, K and Ka-band for two different insulating substrates. Objective:: Numerical investigation of return loss, insertion loss, isolation loss are computed under both actuated and unactuated states for two different insulating substrates of the 1-bit RF MEMS switch, and corresponding up and down-capacitances are obtained. Methods:: The unique characteristics of a 1-bit RF MEMS switch of providing higher return loss under both actuated and unactuated states and also of isolation loss with negligible insertion loss makes it as a prime candidate for phase shifter application. This is presented in this manuscript with a keen focus on improvement capability by changing transmission line width, and also of overlap area; where dielectric constant of the substrate also plays a vital role. Results:: The present work exhibits very low down-capacitance over the spectrum whereas considerable amount of up-capacitance. Also when overall performance in terms of all loss parameters are considered, switch provides very low insertion loss, good return loss under actuated state and standard isolation loss. Conclusion:: Reduction of transmission line width of about 33% improved the performance of the switch by increasing isolation loss. Isolation loss of -40 dB is obtained at actuated condition in higher microwave spectra for SiO 2 at higher overlap area. Down capacitance of ~ 1dB is obtained which is novel as compared with other published literature. Moreover, a better combination of both return loss, isolation loss and insertion loss are reported in this present work compared with all other published data so far.


2006 ◽  
Vol E89-C (12) ◽  
pp. 1880-1887 ◽  
Author(s):  
Y.-T. SONG ◽  
H.-Y. LEE ◽  
M. ESASHI

Sign in / Sign up

Export Citation Format

Share Document