scholarly journals Nanoindentation of Soft Biological Materials

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 654 ◽  
Author(s):  
Long Qian ◽  
Hongwei Zhao

Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.

Nanoscale ◽  
2019 ◽  
Vol 11 (18) ◽  
pp. 8918-8929 ◽  
Author(s):  
Enrique A. López-Guerra ◽  
Hongchen Shen ◽  
Santiago D. Solares ◽  
Danmeng Shuai

History-dependent viscoelastic analysis by atomic force microscopy delivers highly spatial-localized biofilm properties within a wide time–frequency window.


2007 ◽  
Vol 539-543 ◽  
pp. 3534-3539
Author(s):  
S.J. Bull

The development of nanostructured materials and coatings has driven the development of indentation-based assessment techniques which aim to generate useful mechanical property information. This paper introduces an approach to determine the limits for which direct measurement of these properties are possible and highlights the importance of modelling if reliable data is to be obtained from very thin coatings (<200nm) and fine grained materials.


Author(s):  
K. Przybylski ◽  
A. J. Garratt-Reed ◽  
G. J. Yurek

The addition of so-called “reactive” elements such as yttrium to alloys is known to enhance the protective nature of Cr2O3 or Al2O3 scales. However, the mechanism by which this enhancement is achieved remains unclear. An A.E.M. study has been performed of scales grown at 1000°C for 25 hr. in pure O2 on Co-45%Cr implanted at 70 keV with 2x1016 atoms/cm2 of yttrium. In the unoxidized alloys it was calculated that the maximum concentration of Y was 13.9 wt% at a depth of about 17 nm. SIMS results showed that in the scale the yttrium remained near the outer surface.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Sign in / Sign up

Export Citation Format

Share Document