On experimental testing methods for characterizing the mechanical properties of soft biological materials such as arterial tissues

2006 ◽  
Vol 39 ◽  
pp. S324
Author(s):  
G.A. Holzapfel ◽  
R.W. Ogden
Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 654 ◽  
Author(s):  
Long Qian ◽  
Hongwei Zhao

Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.


2014 ◽  
Vol 496-500 ◽  
pp. 448-451
Author(s):  
Hong Lan ◽  
Qi Xue ◽  
Cheng Yu Cui

Systematic testing methods of the performance of diamond/metal composite drilling segments (impregnated diamond cutters) have not come into being. This article tries to test the mechanical properties, structures and component of a certain number of impregnated diamond cutters; focuses on analysis of the relationship between the performance of typical composite diamond cutters and materials’ structures, intends to study the testing methods of impregnated diamond cutters’ performance.


Author(s):  
Hidayat Hidayat

The use of metal in the industrial world, especially ST60 Steel, is a very vital need, this can be seen from the increasing number of machine or equipment components or construction parts made of steel. Hardness is one of the mechanical properties that is often used as a guide in selecting materials for an equipment component. To find out the hardness price of a material, various testing methods can be used, including the Vickers method, which is tested by applying a force to the indented diamond pyramid against the material for which the hardness value is determined. The amount of hardness value is determined by the magnitude of the loading force divided by the area of indentation. In this study, what was investigated was the effect of force on the hardness of the Vickers method. The results showed that the load variation had little effect on the results of the Vickers hardness value, especially for high loads (100 Kgf). The average hardness value for the mild steel being tested is 163 HV and 168 HV, the highest hardness value is 174 HV and the lowest hardness value is 156 HV, so that a tolerance of ± 10 HV commonly used in the Vickers test is sufficient.Keywords: Hardness, ST 60 Steel , Loading Variations, Vickers Test


2010 ◽  
Vol 24 (01n02) ◽  
pp. 136-147 ◽  
Author(s):  
SHEAU HOOI LIM ◽  
KAIYANG ZENG ◽  
CHAOBIN HE

This paper presents recent studies on the processing and characterization of epoxy-alumina nanocomposites. Nano-sized alumina particles are incorporated into epoxy resin via solvent-assisted method, so that the particles are dispersed homogeneously in the epoxy matrix. The morphologies, mechanical and thermomechanical properties of the resulting nanocomposites are studied using transmission electron microscope (TEM), conventional tensile testing and thermomechanical testing methods. TEM results show that the alumina nano-particles with a higher specific surface area tend to agglomerate. Furthermore platelet shape particles shows a better dispersion homogeneity as well as better improvement in the mechanical properties of the composites compared to the rod shape particles.


1970 ◽  
Vol 4 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Norman K. Wood ◽  
Edward J. Kaminski ◽  
Richard J. Oglesby

2012 ◽  
pp. 1285-1285
Author(s):  
Gabriela Juarez-Martinez ◽  
Alessandro Chiolerio ◽  
Paolo Allia ◽  
Martino Poggio ◽  
Christian L. Degen ◽  
...  

Author(s):  
Ainhoa Martinez Ormaetxea ◽  
Andreas Öchsner

The manufacturing process of bone scaffold structures has an important influence on the final mechanical strength of the structure. When the structures are not produced properly, i.e. have imperfections such as missing parts or slightly displaced joints, they lose some of their mechanical properties. The aim of this study was to see how different types of damage affect the structures and also if their effects are equal when the structure is subjected to different load conditions. The change of the mechanical behavior was determined using the commercial finite element software MSC Marc Mentat. In turn, the damage was introduced by manipulating the structure’s files (ASCII data files) using the programming language Fortran. Apart from the numerical simulations, experimental testing was also performed to verify the numerical results. In the frame of this study, useful information for further research is provided.


Sign in / Sign up

Export Citation Format

Share Document