scholarly journals Occurrence of tet(O/M/O) Mosaic Gene in Tetracycline-Resistant Campylobacter

2020 ◽  
Vol 8 (11) ◽  
pp. 1710 ◽  
Author(s):  
Lorena Hormeño ◽  
Maria J. Campos ◽  
Santiago Vadillo ◽  
Alberto Quesada

Campylobacter is one of the most important microorganisms responsible for foodborne diseases in the EU. In this study, we investigated resistance to tetracycline in 139 Campylobacter jejuni and Campylobacter coli samples isolated from human clinical cases. From these, 110 were resistant to tetracycline, with MIC (minimal inhibitory concentration) varying in a range of 1 to >512 μg/mL, and 109 (78.4%) carried tet(O), a gene that confers resistance to tetracycline through the expression of a protein that confers protection to the ribosome. Amongst the tetracycline-resistant isolates, one C. jejuni (HCC30) was the only tet(O)-negative sample, presenting an MIC of 256 μg/mL. Instead, the mosaic gene tet(O/M/O) was found in HCC30 and, as far as we know, this is the first description of this chimeric gene originating from homologous recombination between tet(O) and tet(M). The previously described mosaic gene tet(O/32/O), also found in Campylobacter, presents a chimeric structure very similar to that of tet(O/M/O), affecting domains II and III of encoded proteins distantly related to the elongation factor G (EF-G). The tet(O/M/O) mosaic gene has been found in nucleotide databases in several genomes of Campylobacter isolated from different origins, indicating its frequent acquisition, even though it can be undetected through screening by PCR with specific tet(O) primers. In this work, we address the improvement of classical PCR to efficiently diagnose the most prevalent tetracycline resistance determinants in Campylobacter, including tet(O/M/O), which should be taken into account in the optimization of campylobacteriosis treatments.

2007 ◽  
Vol 74 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Ana Belén Flórez ◽  
Morten Danielsen ◽  
Jenni Korhonen ◽  
Joanna Zycka ◽  
Atte von Wright ◽  
...  

In order to establish cut-off values forLactococcus lactisto six antibiotics to distinguish susceptible and intrinsically resistant strains from those having acquired resistances, the minimum inhibitory concentration (MIC) of tetracycline, erythromycin, clindamycin, streptomycin, chloramphenicol and vancomycin was determined in 93 differentLc. lactisstrains using the Etest. These bacterial strains were originally isolated from dairy and animal sources in widely separated geographical locations. Cut-offs were defined on the basis of the distribution of the MICs frequency of the studied antibiotics, which in the absence of acquired determinants should approach to a normal statistical distribution. In general, the new cut-off values proposed in this study are higher than previously defined (European Commission, 2005. The EFSA Journal 223, 1–12). Based on these new values, all the strains tested were susceptible to erythromycin, chloramphenicol and vancomycin, and 79 susceptible to all six antibiotics. However, 11 strains (around 12%) were considered resistant to tetracycline (six of which had been identified after screening of a large collection of lactococci strains for tetracycline resistance) and five (5·4%) resistant to streptomycin. Of these, two fish isolates proved to be resistance to both tetracycline and streptomycin. From the tetracycline resistant strains,tet(M) and mosaictet(L/S) genes were amplified by PCR, demonstrating they harboured acquired antibiotic resistance determinants.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 308 ◽  
Author(s):  
Caoimhe T. Lynch ◽  
Helen Lynch ◽  
Sarah Burke ◽  
Kayleigh Hawkins ◽  
Colin Buttimer ◽  
...  

Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.


2011 ◽  
Vol 57 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Mohammad Hamidian ◽  
Maryam Sanaei ◽  
Mehdi Bolfion ◽  
Hossein Dabiri ◽  
Mohammad-Reza Zali ◽  
...  

The incidence of the virulence-associated genes cdtA, cdtB, cdtC, cadF, dnaJ, racR, and pldA has been investigated in Campylobacter jejuni and Campylobacter coli collected from raw chicken and beef from retailers in Tehran, Iran, and from hospitalized children (age, ≤14 years) suffering from diarrhea. Campylobacter spp. were collectively identified by morphological and biochemical methods. Campylobacter jejuni and C. coli were discriminated from other Campylobacter spp. by amplification of a specific conserved fragment of the 16S rRNA gene. The distinction between C. jejuni and C. coli was subsequently made by molecular determination of the presence of the hipO gene in C. jejuni or the ask gene in C. coli. Fragments of the studied virulence-associated genes, cdtA, cdtB, cdtC, cadF, racR, dnaJ, and pldA, were amplified by PCR and subjected to horizontal gel electrophoresis. A total of 71 isolates of C. jejuni and 24 isolates of C. coli from meat were analyzed, while the numbers of isolates from the hospitalized children were 28 and 9, respectively. The unequal distribution of C. jejuni and C. coli in the samples has also been reported in other studies. Statistical analyses by the use of the two-tailed Fisher’s exact test of the occurrence of the virulence genes in the isolates of different origins showed that the occurrence of the dnaJ gene was consistently significantly higher in all C. jejuni isolates than in C. coli. The occurrence of the other virulence markers did not differ significantly between species in the majority of the isolates. The PCR results also showed that the occurrence of the virulence markers in the analyzed isolates was much lower than in other studies, which may be caused by a divergent genomic pool of our isolates in comparison with others.


1997 ◽  
Vol 41 (10) ◽  
pp. 2244-2250 ◽  
Author(s):  
F M Aarestrup ◽  
E M Nielsen ◽  
M Madsen ◽  
J Engberg

The MICs of 16 antimicrobial agents were determined for 202 Campylobacter jejuni isolates, 123 Campylobacter coli isolates, and 6 Campylobacter lari isolates from humans and food animals in Denmark. The C. jejuni isolates originated from humans (75), broilers (95), cattle (29), and pigs (3); the C. coli isolates originated from humans (7), broilers (17), and pigs (99); and the C. lari isolates originated from broilers (5) and cattle (1). All isolates were susceptible to apramycin, neomycin, and gentamicin. Only a few C. jejuni isolates were resistant to one or more antimicrobial agents. Resistance to tetracycline was more common among C. jejuni isolates from humans (11%) than among C. jejuni isolates from animals (0 to 2%). More resistance to streptomycin was found among C. jejuni isolates from cattle (10%) than among those from humans (4%) or broilers (1%). A greater proportion of C. coli than of C. jejuni isolates were resistant to the other antimicrobial agents tested. Isolates were in most cases either coresistant to tylosin, spiramycin, and erythromycin or susceptible to all three antibiotics. More macrolide-resistant isolates were observed among C. coli isolates from swine (79%) than among C. coli isolates from broilers (18%) and humans (14%). Twenty-four percent of C. coli isolates from pigs were resistant to enrofloxacin, whereas 29% of C. coli isolates from humans and none from broilers were resistant. More resistance to streptomycin was observed among C. coli isolates from swine (48%) than among C. coli isolates from broilers (6%) or humans (0%). The six C. lari isolates were susceptible to all antimicrobial agents except ampicillin and nalidixic acid. This study showed that antimicrobial resistance was found only at relatively low frequencies among C. jejuni and C. lari isolates. Among C. coli isolates, especially from swine, there was a high level of resistance to macrolides and streptomycin. Furthermore, this study showed differences in the resistance to antimicrobial agents among Campylobacter isolates of different origins.


2008 ◽  
Vol 52 (8) ◽  
pp. 2699-2708 ◽  
Author(s):  
Byeonghwa Jeon ◽  
Wayne Muraoka ◽  
Orhan Sahin ◽  
Qijing Zhang

ABSTRACT Campylobacter jejuni, an important food-borne human pathogen, is increasingly resistant to antimicrobials. Natural transformation is considered to be a main mechanism for mediating the transfer of genetic materials encoding antibiotic resistance determinants in C. jejuni, but direct evidence for this notion is still lacking. In this study, we determined the role of Cj1211 in natural transformation and in the development of antibiotic resistance in C. jejuni. Insertional mutagenesis of Cj1211, a Helicobacter pylori ComH3 homolog, abolished natural transformation in C. jejuni. In vitro coculture of C. jejuni strains carrying either kanamycin or tetracycline resistance markers demonstrated the development of progenies that were resistant to both antibiotics, indicating that the horizontal transfer of antibiotic resistance determinants actively occurs in mixed Campylobacter populations. A mutation of Cj1211 or the addition of DNase I in culture media completely inhibited the formation of progenies that were resistant to both antibiotics, indicating that the horizontal transfer of the resistance determinants is mediated by natural transformation. Interestingly, the mutation of Cj1211 also reduced the frequency of emergence of spontaneous mutants that were resistant to fluoroquinolone (FQ) and streptomycin but did not affect the outcome of FQ resistance development under FQ treatment, suggesting that natural transformation does not play a major role in the emergence of FQ-resistant Campylobacter strains during treatment with FQ antimicrobials. These results define Cj1211 as a competence factor in Campylobacter, prove the role of natural transformation in the horizontal transfer of antibiotic resistance determinants in Campylobacter, and provide new insights into the mechanism underlying the development of FQ-resistant Campylobacter strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
José F. Cobo-Díaz ◽  
Paloma González del Río ◽  
Avelino Álvarez-Ordóñez

Campylobacter spp. are the most frequent agent of human gastroenteritis worldwide, and the spread of multidrug-resistant strains makes the clinical treatment difficult. The current study presents the resistome analysis of 39,798 Campylobacter jejuni and 11,920 Campylobacter coli genomes available in public repositories. Determinants of resistance to β-lactams (Be) and tetracyclines (Te) were the most frequent for both species, with resistance to quinolones (Qu) as the third most important on C. jejuni and to aminoglycosides (Am) on C. coli. Moreover, resistance to Te, Qu, and Am was frequently found in co-occurrence with resistance to other antibiotic families. Geographical differences on clonal complexes distribution were found for C. jejuni and on resistome genotypes for both C. jejuni and C. coli species. Attending to the resistome patterns by isolation source, three main clusters of genomes were found on C. jejuni genomes at antimicrobial resistance gene level. The first cluster was formed by genomes from human, food production animals (e.g., sheep, cow, and chicken), and food (e.g., dairy products) isolates. The higher incidence of tet(O), associated with tetracycline resistance, and the gyrA (T86I) single-nucleotide polymorphism (SNP), associated with quinolone resistance, among genomes from this cluster could be due to the intense use of these antibiotics in veterinary and human clinical settings. Similarly, a high incidence of tet(O) genes of C. coli genomes from pig, cow, and turkey was found. Moreover, the cluster based on resistome patterns formed by C. jejuni and C. coli genomes of human, turkey, and chicken origin is in agreement with previous observations reporting chicken or poultry-related environments as the main source of human campylobacteriosis infections. Most clonal complexes (CCs) associated with chicken host specialization (e.g., ST-354, ST-573, ST-464, and ST-446) were the CCs with the highest prevalence of determinants of resistance to Be, Qu, and Te. Finally, a clear trend toward an increase in the occurrence of Te and Qu resistance determinants on C. jejuni, linked to the spread of the co-occurrence of the blaOXA–61 and tet(O)-tet(O/W/O) genes and the gyrA (T86I) SNP, was found from 2001 to date in Europe.


Author(s):  
Nikta Ahmadpoor ◽  
Roya Ahmadrajabi ◽  
Sarvenaz Esfahani ◽  
Zoya Hojabri ◽  
Mohammad Hassan Moshafi ◽  
...  

Objectives: The purpose of this study was to investigate the distribution pattern of genes responsible for erythromycin and tetracycline resistance and their association with resistance phenotype in enterococci isolates. Materials and Methods: Eighty six Enterococcus faecalis and 26 E. faecium isolates were collected from two hospitals in Kerman-Iran. Minimum inhibitory concentration of erythromycin and tetracycline were determined and then, genes encoding resistance to erythromycin; erm (A-C), mef and msr -and tetracycline; tet (M), tet (O), tet (S), tet (K) and tet (L) – were investigated. Results: In all resistant isolates (n= 72, 64%), high level resistance to both tested antibiotics was found. The most prevalent erm gene was erm (B) (77.7%), followed by erm (A) (15.2%) and erm (C) (8.3%). Genes mediating erythromycin efflux, were detected in 70.8 % (mef) and 9.7% (msr) of resistant isolates. Regarding tetracycline, tet (M) was detected at the highest rate (50%), followed by tet (O) (31%) and tet (S) (11%). Export of tetracycline was found in 31% (tet (K)) and 12% (tet (L)) of isolates. Conclusion: High prevalence of high level resistance to both erythromycin and tetracycline was documented. The alteration at ribosomal level, had bigger role in erythromycin and tetracycline resistance than efflux systems. Concurrent resistance mechanisms were more involved in resistance to erythromycin than tetracycline.


Sign in / Sign up

Export Citation Format

Share Document