scholarly journals The Duration of Increased Grain Feeding Affects the Microbiota throughout the Digestive Tract of Yearling Holstein Steers

2020 ◽  
Vol 8 (12) ◽  
pp. 1854
Author(s):  
J. C. Plaizier ◽  
P. Azevedo ◽  
B. L. Schurmann ◽  
P. Górka ◽  
G. B. Penner ◽  
...  

Effects of the duration of moderate grain feeding on the taxonomic composition of gastrointestinal microbiota were determined in 15 Holstein yearling steers. Treatments included feeding a diet of 92% dry matter (DM) hay (D0), and feeding a 41.5% barley grain diet for 7 (D7) or 21 d (D21) before slaughter. At slaughter, digesta samples were collected from six regions, i.e., the rumen, jejunum, ileum, cecum, colon, and rectum. Extracted DNA from these samples was analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Three distinct PCoA clusters existed, i.e., the rumen, the jejunum/ileum, and the cecum/colon/rectum. Feeding the grain diet for 7 d reduced microbial diversity in all regions, except the ileum. Extending the duration of grain feeding from 7 to 21 d did not affect this diversity further. Across regions, treatment changed the relative abundances of 89 genera. Most of the changes between D0 and D7 and between D7 and D21 were opposite, demonstrating the resilience of gastrointestinal microbiota to a moderate increase in grain feeding. Results show that the duration of a moderate increase in grain feeding affects how gastrointestinal microbiota respond to this increase.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 138-139
Author(s):  
Allison Knoell ◽  
Nirosh Aluthge ◽  
Waseem Abbas ◽  
Alison Bartenslager ◽  
Jared Judy ◽  
...  

Abstract The rumen microbial community is responsible for producing a majority of the energetic needs for the animal, yet our understanding of the rumen microbiome is in its infancy. To better understand the effect of corn-ethanol coproducts on rumen microbial communities, a replicated 4 × 4 Latin square design study utilizing 12 cows in three squares was conducted to evaluate the replacement of alfalfa hay with a mixture (CoP) containing straw and dried distillers grains plus solubles (DDGS) in lactating Jersey cows. The experimental treatments were (proportions on a dry matter basis): a control diet (CON) containing 18.2% of alfalfa hay with no straw or DDGS. A low coproduct diet (LCoP) containing 12.1% alfalfa, 2.1% straw, and 6.0% DDGS. A medium coproduct diet (MCoP) containing 6.1% alfalfa, 4.2% straw, and 12.1% DDGS. A high coproduct diet (HCoP) containing 6.2% straw, 18.1% DDGS with no alfalfa. Rumen digesta samples were collected via an esophageal tube. No differences were observed for milk production and dry matter intake (P ≥ 0.307) (mean ± SEM) 19.5 kg ± 0.60, 29.6 kg ± 0.91, across treatments, while a decrease in methane was observed (P < 0.01) for the HCoP treatment. The bacterial community was assessed by sequencing the V4 region of the 16S rRNA gene. Additionally, the archaeal community was assessed by sequencing the V4-V5 region of the 16S rRNA gene on the Illumina MiSeq platform. Amplicon Sequence Variants were identified using the DADA2 pipeline. No significant differences were observed for the bacterial (P = 0.334) and archaeal (P = 0.593) communities. Although global effects in microbial community dynamics were not observed, differential taxa were observed with Lachnospiraceae being the major differentially abundant Family. The archaeal community composition demonstrated that Methanobacteriales to be the differentially abundant Order across treatments, and may contribute to methane production.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document