scholarly journals Effects of Spartina alterniflora Invasion on Soil Microbial Community Structure and Ecological Functions

2021 ◽  
Vol 9 (1) ◽  
pp. 138
Author(s):  
Minmin Cao ◽  
Lina Cui ◽  
Huimin Sun ◽  
Xiaomian Zhang ◽  
Xiang Zheng ◽  
...  

It has been reported that the invasion of Spartina alterniflora changed the soil microbial community in the mangrove ecosystem in China, especially the bacterial community, although the response of soil fungal communities and soil microbial ecological functions to the invasion of Spartina alterniflora remains unclear. In this study, we selected three different communities (i.e., Spartina alterniflora community (SC), Spartina alterniflora–mangrove mixed community (TC), and mangrove community (MC)) in the Zhangjiangkou Mangrove Nature Reserve in China. High-throughput sequencing technology was used to analyze the impact of Spartina alterniflora invasion on mangrove soil microbial communities. Our results indicate that the invasion of Spartina alterniflora does not cause significant changes in microbial diversity, but it can alter the community structure of soil bacteria. The results of the LEfSe (LDA Effect Size) analysis show that the relative abundance of some bacterial taxa is not significantly different between the MC and SC communities, but different changes have occurred during the invasion process (i.e., TC community). Different from the results of the bacterial community, the invasion of Spartina alterniflora only cause a significant increase in few fungal taxa during the invasion process, and these taxa are at some lower levels (such as family, genus, and species) and classified into the phylum Ascomycota. Although the invasion of Spartina alterniflora changes the taxa with certain ecological functions, it may not change the potential ecological functions of soil microorganisms (i.e., the potential metabolic pathways of bacteria, nutritional patterns, and fungal associations). In general, the invasion of Spartina alterniflora changes the community structure of soil microorganisms, but it may not affect the potential ecological functions of soil microorganisms.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Maiko Akari ◽  
Yoshitaka Uchida

Livestock waste-based products, such as composted manure, are often used in crop production systems. The products’ microbial characteristics differ depending on animal waste treatment methods used (e.g., biogas production/composting). The question remains whether different livestock waste-based products differently impact soil microbiota. A pot experiment with five treatments (control, chemical fertilizer, digestate + chemical fertilizer, wheat straw compost + chemical fertilizer, and woodchip compost + chemical fertilizer) was conducted to compare the survival rates of microbial communities from digestate and composted manure, after their application to agricultural soil. Potatoes were planted in each pot. The changes in soil pH, the concentration of ammonium and nitrate, and the microbial community properties were monitored after 1, 6, 10, and 14 weeks of the application of livestock waste-based products. The application of composted manure, especially woodchip compost, showed a relatively more extensive impact on the soil microbial community structure than the other treatments. Woodchip compost contained a relatively more abundant and diverse bacterial community than digestate, and its family-level bacterial community structure was similar to that of the soil. These characteristics might determine the extent of the impact of livestock waste-based products on soil microbial communities. Digestate markedly influenced the inorganic nitrogen concentrations in soils but did not affect the soil microbial community. In conclusion, the survival rate of microbes of livestock waste-based products varies depending on the product type. Further investigation is needed to fully understand their impact on soils’ microbial functions.


2019 ◽  
Author(s):  
Katja Wiedner ◽  
Steven Polifka

Abstract. Since decades, microplastics and microglass enter aquatic and terrestrial environments. The complexity of the environmental impact is difficult to capture and consequences on ecosystem components e.g. such as soil microorganisms are virtually unknown. Addressing this issue, we performed an incubation experiment by adding 1 % of five different types of impurities (≤ 100 µm) to an agricultural used soil (Chernozem). Four microplastic types (polypropylene (PP), low density polyethylene (LD-PE), polystyrene (PS) and polyamide12 (PA12)) and microglass were used as treatment variants. After 80 days of incubation at 20 °C, we examined soil microbial community structure by using phospholipid fatty acids (PLFA) as markers for bacteria, fungi and protozoa. The results showed that soil microorganisms were not significantly affected by the presence of microplastic and microglass. However, PLFAs tend to increase in LD-PE (27 %), PP (18 %) and microglass (11 %) treated soil in comparison with untreated soil, whereas PLFAs in PA12 (32 %) and PS (11 %) treated soil decreased. Interestingly, the comparison of PLFA contents between microplastic types revealed significant differences of PA12 (−87 %) and PS (−42 %) compared to LD-PE. Furthermore, bacterial PLFAs showed a much higher variability after microplastic incubation whereby fungi seem to be more unaffected after 80 days of incubation. Same for protozoa, which were more or less unaffected by microplastic treatment showing only minor reduction of the PLFA contents compared to control. In contrast, microglass has obviously an inhibiting effect on protozoa because PLFAs were under the limit of determination. Our study provides hints, that microplastics have, depending on type, contrary effects on soil microbiology and microglass seems to be highly toxic for protozoa.


2011 ◽  
Vol 77 (17) ◽  
pp. 6158-6164 ◽  
Author(s):  
Natasha C. Banning ◽  
Deirdre B. Gleeson ◽  
Andrew H. Grigg ◽  
Carl D. Grant ◽  
Gary L. Andersen ◽  
...  

ABSTRACTSoil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.


2021 ◽  
Author(s):  
Linya XU ◽  
Yuanhui LIU ◽  
Kankan ZHAO ◽  
Shan LIU ◽  
Erinne Stirling ◽  
...  

Abstract Earth is the cradle of mankind, but it is impossible for human beings to live in the cradle forever. Sending soil microbial spores through space to foreign planets will be a likely initial process in planet colonization. Periods of hyper-gravity are likely to be a challenge for the candidate microorganisms during their interstellar transportation, raising questions about their survival rates and community-level responses. To address these questions, the impacts of hyper-gravity on soil microbial community composition and activity were tested by applying 1×g or 2500×g centrifugal force to soil for 6 days. The results indicated an increased diversity and absolute abundance of soil total bacterial community and a relatively stable active bacterial community under hyper-gravity condition. Besides, hyper-gravity had no observable effect on the relative abundance of soil microorganisms. These results suggest that soil microorganisms could survive during short periods of hyper-gravity. Our findings represent the first step towards a better understanding of the potential for survival of soil microbiomes during space travel and provide a basis for further interstellar soil research.


SOIL ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 315-324
Author(s):  
Katja Wiedner ◽  
Steven Polifka

Abstract. Microplastic and microglass particles from different sources enter aquatic and terrestrial environments. The complexity of their environmental impact is difficult to capture, and the consequences for ecosystem components, for example, the soil microorganisms, are virtually unknown. To address this issue, we performed an incubation experiment by adding 1 % of five different types of impurities (≤100 µm) to an agriculturally used soil (Chernozem) and simulating a worst-case scenario of contamination. The impurities were made of polypropylene (PP), low-density polyethylene (LDPE), polystyrene (PS), polyamide 12 (PA12) and microglass. After 80 d of incubation at 20 ∘C, we examined the soil microbial community structure by using phospholipid fatty acids (PLFAs) as markers for bacteria, fungi and protozoa. The results showed that soil microorganisms were not significantly affected by the presence of microplastic and microglass. However, PLFAs tend to increase with LDPE (28 %), PP (19 %) and microglass (11 %) in treated soil in comparison with untreated soil, whereas PLFAs in PA12 (32 %) and PS (11 %) in treated soil decreased. Interestingly, PLFAs revealed significant differences in PA12 (−89 %) and PS (−43 %) in comparison with LDPE. Furthermore, variability of bacterial PLFAs was much higher after microplastic incubation, while fungi seemed to be unaffected from different impurities after 80 d of incubation. Similar results were shown for protozoa, which were also more or less unaffected by microplastic treatment as indicated by the minor reduction in PLFA contents compared to the control group. In contrast, microglass seems to have an inhibiting effect on protozoa because PLFAs were under the limit of determination. Our study indicated that high amounts of different microplastics may have contrary effects on soil microbiology. Microglass might have a toxic effect for protozoa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaoxiong Lu ◽  
Peng Gao ◽  
Yunsheng Wang ◽  
Wei Li ◽  
Xinwei Cui ◽  
...  

AbstractThe soil microbial community plays a vital role in the biogeochemical cycles of bioelements and maintaining healthy soil conditions in agricultural ecosystems. However, how the soil microbial community responds to mitigation measures for continuous cropping obstacles remains largely unknown. Here we examined the impact of quicklime (QL), chemical fungicide (CF), inoculation with earthworm (IE), and a biocontrol agent (BA) on the soil microbial community structure, and the effects toward alleviating crop yield decline in lily. High-throughput sequencing of the 16S rRNA gene from the lily rhizosphere after 3 years of continuous cropping was performed using the Illumina MiSeq platform. The results showed that Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chloroflexi and Gemmatimonadetes were the dominant bacterial phyla, with a total relative abundance of 86.15–91.59%. On the other hand, Betaproteobacteriales, Rhizobiales, Myxococcales, Gemmatimonadales, Xanthomonadales, and Micropepsales were the dominant orders with a relative abundance of 28.23–37.89%. The hydrogen ion concentration (pH) and available phosphorus (AP) were the key factors affecting the structure and diversity of the bacterial community. The yield of continuous cropping lily with using similar treatments decreased yearly for the leaf blight, but that of IE was significantly (p < 0.05) higher than with the other treatments in the same year, which were 17.9%, 18.54%, and 15.69% higher than that of blank control (CK) over 3 years. In addition, IE significantly (p < 0.05) increased organic matter (OM), available nitrogen (AN), AP, and available potassium (AK) content in the lily rhizosphere soil, optimized the structure and diversity of the rhizosphere bacterial community, and increased the abundance of several beneficial bacterial taxa, including Rhizobiales, Myxococcales, Streptomycetales and Pseudomonadales. Therefore, enriching the number of earthworms in fields could effectively optimize the bacterial community structure of the lily rhizosphere soil, promote the circulation and release in soil nutrients and consequently alleviate the loss of continuous cropping lily yield.


Sign in / Sign up

Export Citation Format

Share Document