scholarly journals Biogeographic Role of the Kuroshio Current Intrusion in the Microzooplankton Community in the Boundary Zone of the Northern South China Sea

2021 ◽  
Vol 9 (5) ◽  
pp. 1104
Author(s):  
Ping Sun ◽  
Silu Zhang ◽  
Ying Wang ◽  
Bangqin Huang

Kuroshio Current intrusion (KCI) has significant impacts on the oceanographic conditions and ecological processes of the Pacific-Asian marginal seas. Little is known to which extent and how, specifically, the microzooplankton community can be influenced through the intrusion. Here, we focused on ciliates that often dominated the microzooplankton community and investigated their communities using high-throughput sequencing of 18S rRNA gene transcripts in the northern South China Sea (NSCS), where the Kuroshio Current (KC) intrudes frequently. We first applied an isopycnal mixing model to assess the fractional contribution of the KC to the NSCS. The ciliate community presented a provincial distribution pattern corresponding to more and less Kuroshio-influenced stations. Structural equation modeling revealed a significant impact of the KCI on the community, while environmental variables had a marginal impact. KCI-sensitive OTUs were taxonomically diverse but mainly belonged to classes Spirotrichea and Phyllopharyngea, suggesting the existence of core ciliates responding to the KCI. KCI-sensitive OTUs were grouped into two network modules that showed contrasting abundance behavior with the KC fraction gradient, reflecting differential niches (i.e., winner and loser) in the ciliate community during the Kuroshio intrusion scenarios. Our study showed that the Kuroshio intrusion, rather than environmental control, was particularly detrimental to the oligotrophic microzooplankton community.

2013 ◽  
Vol 10 (10) ◽  
pp. 6419-6432 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ∼13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13 and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.


2013 ◽  
Vol 10 (4) ◽  
pp. 6939-6972 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ~ 13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13% and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.


2021 ◽  
Vol 8 ◽  
Author(s):  
Feipeng Wang ◽  
Bangqin Huang ◽  
Yuyuan Xie ◽  
Shujie Cai ◽  
Xiuxiu Wang ◽  
...  

Nano- and pico-eukaryotes play important roles in the diversity and functions of marine ecosystems. Warm, saline, and nutrient-depleted water that originates in the Kuroshio Current seasonally intrudes into the northern South China Sea (NSCS) from autumn to spring. To clarify the mechanisms in shaping the community structure of nano- and pico-eukaryotes as well as impacts of the Kuroshio intrusion on the NSCS ecosystem, genomic DNA and RNA were co-extracted from samples collected at two depths from nine stations, and then the V9 region of 18S rDNA and rRNA was sequenced with high-throughput sequencing. Our results showed that Dinophyceae was the most diverse and abundant nanoeukaryotic group during the study period revealed by both DNA and RNA surveys. In contrast, the relative read abundance of MAST, Pelagophyceae, and Dinophyceae in the size fraction of picoeukaryotes might be largely underestimated by the DNA survey. The RNA survey was the more reliable method to investigate the eukaryotic community structure. Environmental filtering played an important role in shaping the community structure, and the sampling depth became the governing factor of the beta diversity under the environmental setting of stratification during the study period. The spatial variations in the diversity of nanoeukaryotes were subject to the dispersal limitation under the size rule. The effects of the Kuroshio intrusion on the nanoeukaryotic community structure might also be explained by the dispersal limitation. Overall, neutral processes are critical in shaping the community structure of nanoeukaryotes. The relative metabolic activities of nanoeukaryotes were relatively stable in accordance with the high similarity of community structure between sampling sites. The responses of the relative metabolic activities of picoeukaryotes to environmental factors displayed two distinct patterns: positive correlations with salinity and nutrients and negative with temperature for Dinophyceae, MAST, and Pelagophyceae, while reversed patterns for Mamiellophyceae and Radiolaria. Our findings improve the understanding of the nano- and pico-eukaryotic communities in the NSCS and the mechanisms of their assembly.


2018 ◽  
Vol 68 (12) ◽  
pp. 1695-1709 ◽  
Author(s):  
Simeng Qian ◽  
Hao Wei ◽  
Jin-gen Xiao ◽  
Hongtao Nie

Sign in / Sign up

Export Citation Format

Share Document