scholarly journals Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model

2013 ◽  
Vol 10 (10) ◽  
pp. 6419-6432 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ∼13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13 and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.

2013 ◽  
Vol 10 (4) ◽  
pp. 6939-6972 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ~ 13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13% and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.


2021 ◽  
Vol 9 (5) ◽  
pp. 1104
Author(s):  
Ping Sun ◽  
Silu Zhang ◽  
Ying Wang ◽  
Bangqin Huang

Kuroshio Current intrusion (KCI) has significant impacts on the oceanographic conditions and ecological processes of the Pacific-Asian marginal seas. Little is known to which extent and how, specifically, the microzooplankton community can be influenced through the intrusion. Here, we focused on ciliates that often dominated the microzooplankton community and investigated their communities using high-throughput sequencing of 18S rRNA gene transcripts in the northern South China Sea (NSCS), where the Kuroshio Current (KC) intrudes frequently. We first applied an isopycnal mixing model to assess the fractional contribution of the KC to the NSCS. The ciliate community presented a provincial distribution pattern corresponding to more and less Kuroshio-influenced stations. Structural equation modeling revealed a significant impact of the KCI on the community, while environmental variables had a marginal impact. KCI-sensitive OTUs were taxonomically diverse but mainly belonged to classes Spirotrichea and Phyllopharyngea, suggesting the existence of core ciliates responding to the KCI. KCI-sensitive OTUs were grouped into two network modules that showed contrasting abundance behavior with the KC fraction gradient, reflecting differential niches (i.e., winner and loser) in the ciliate community during the Kuroshio intrusion scenarios. Our study showed that the Kuroshio intrusion, rather than environmental control, was particularly detrimental to the oligotrophic microzooplankton community.


2021 ◽  
Vol 8 ◽  
Author(s):  
Feipeng Wang ◽  
Bangqin Huang ◽  
Yuyuan Xie ◽  
Shujie Cai ◽  
Xiuxiu Wang ◽  
...  

Nano- and pico-eukaryotes play important roles in the diversity and functions of marine ecosystems. Warm, saline, and nutrient-depleted water that originates in the Kuroshio Current seasonally intrudes into the northern South China Sea (NSCS) from autumn to spring. To clarify the mechanisms in shaping the community structure of nano- and pico-eukaryotes as well as impacts of the Kuroshio intrusion on the NSCS ecosystem, genomic DNA and RNA were co-extracted from samples collected at two depths from nine stations, and then the V9 region of 18S rDNA and rRNA was sequenced with high-throughput sequencing. Our results showed that Dinophyceae was the most diverse and abundant nanoeukaryotic group during the study period revealed by both DNA and RNA surveys. In contrast, the relative read abundance of MAST, Pelagophyceae, and Dinophyceae in the size fraction of picoeukaryotes might be largely underestimated by the DNA survey. The RNA survey was the more reliable method to investigate the eukaryotic community structure. Environmental filtering played an important role in shaping the community structure, and the sampling depth became the governing factor of the beta diversity under the environmental setting of stratification during the study period. The spatial variations in the diversity of nanoeukaryotes were subject to the dispersal limitation under the size rule. The effects of the Kuroshio intrusion on the nanoeukaryotic community structure might also be explained by the dispersal limitation. Overall, neutral processes are critical in shaping the community structure of nanoeukaryotes. The relative metabolic activities of nanoeukaryotes were relatively stable in accordance with the high similarity of community structure between sampling sites. The responses of the relative metabolic activities of picoeukaryotes to environmental factors displayed two distinct patterns: positive correlations with salinity and nutrients and negative with temperature for Dinophyceae, MAST, and Pelagophyceae, while reversed patterns for Mamiellophyceae and Radiolaria. Our findings improve the understanding of the nano- and pico-eukaryotic communities in the NSCS and the mechanisms of their assembly.


2018 ◽  
Vol 68 (12) ◽  
pp. 1695-1709 ◽  
Author(s):  
Simeng Qian ◽  
Hao Wei ◽  
Jin-gen Xiao ◽  
Hongtao Nie

2021 ◽  
Vol 9 (2) ◽  
pp. 227
Author(s):  
Hui Shen ◽  
Li Li ◽  
Jianlong Li ◽  
Zhiguo He ◽  
Yuezhang Xia

The large variations in salinity at the salinity maximum in the northern South China Sea (NSCS), as an indicator for the changes in the Kuroshio intrusion (KI), play an important role in the hydrological cycle. The high salinity here is more than 34.65 at the salinity maximum and is intriguing. In the past, the salinity was difficult to trace in the entire NSCS over long periods due to a lack of high-quality observations. However, due to the availability of accumulated temperature and salinity (T-S) profiles from the Argo program, it is now possible to capture subsurface-maximum data on a large spatiotemporal scale. In this study, the salinity maximum distributed in the subsurface of 80 to 200 m at a density of 23.0–25.5 σθ was extracted from decades of Argo data (on the different pressure surfaces, 2006–2019). We then further studied the spatial distribution and seasonal variation of the salinity maximum and its anomalously high salinity. The results suggest that a high salinity (salinity > 34.65, most of which is located at the shallow depths < 100 m) at the subsurface salinity-maximum layer often occurs in the NSCS, especially near the Luzon Strait, which accounts for about 23% of the total salinity maximum. In winter, the anomalously high salinity at the shallow subsurface salinity maximum can extend to the south of 17° N, while it rarely reaches 18° N and tends to locate at deeper waters in summer. The T-S values of the anomalously high-salinity water are between the mean T-S values in the NSCS and north Pacific subsurface water, implying that the outer sea water gradually mixes with the South China Sea water after passing through the Luzon Strait. Finally, our results show that the factors play an important role in the appearance and distribution of the anomalously high salinity at the subsurface salinity maximum, including the strength of the Kuroshio intrusion, the local wind stress curl and the anticyclonic eddy shedding from the loop current.


2014 ◽  
Vol 11 (23) ◽  
pp. 6813-6826 ◽  
Author(s):  
C.-L. Wei ◽  
M.-C. Yi ◽  
S.-Y. Lin ◽  
L.-S. Wen ◽  
W.-H. Lee

Abstract. Vertical distributions of dissolved and particulate 210Pb and 210Po in the water column at the SouthEast Asian Time-series Study (SEATS, 18°00´ N and 116°00´ E) station in the northern South China Sea were determined from four cruises between January 2007 and June 2008. A large deficiency of 210Pb, 379 ± 43 × 103 dpm m−2, from the secular equilibrium was found within the 3500 m water column. On the other hand, a smaller deficiency of 210Po, 100 ± 21 × 103 dpm m−2, relative to 210Pb was found in the water column. Time-series data showed insignificant temporal variability of the 210Pb and 210Po profiles. To balance these deficiencies, the removal fluxes for 210Pb and 210Po via particle settling ranging from 45 to 51 dpm m−2d−1 and from 481 to 567 dpm m−2d−1, respectively, are expected at 3500 m. The 210Pb removal flux is comparable with, whereas the 210Po removal flux is much higher than, the flux directly measured by moored sediment traps. The discrepancy between the modeled 210Po flux and the measured flux suggests that sporadic events that enhance 210Po removal via sinking ballast may occur in the water column at the site.


2016 ◽  
Vol 35 (9) ◽  
pp. 1-12 ◽  
Author(s):  
Tongya Liu ◽  
Jiexin Xu ◽  
Yinghui He ◽  
Haibin Lü ◽  
Yuan Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document