scholarly journals Genomic Insights into Denitrifying Methane-Oxidizing Bacteria Gemmobacter fulva sp. Nov., Isolated from an Anabaena Culture

2021 ◽  
Vol 9 (12) ◽  
pp. 2423
Author(s):  
Long Jin ◽  
Chun-Zhi Jin ◽  
Hyung-Gwan Lee ◽  
Chang Soo Lee

The genus Gemmobacter grows phototrophically, aerobically, or anaerobically, and utilizes methylated amine. Here, we present two high-quality complete genomes of the strains con4 and con5T isolated from a culture of Anabaena. The strains possess sMMO (soluble methane monooxygenase)-oxidizing alkanes to carbon dioxide. Functional genes for methane-oxidation (prmAC, mimBD, adh, gfa, fdh) were identified. The genome of strain con5T contains nirB, nirK, nirQ, norB, norC, and norG genes involved in dissimilatory nitrate reduction. The presence of nitrite reductase gene (nirK) and the nitric-oxide reductase gene (norB) indicates that it could potentially use nitrite as an electron acceptor in anoxic environments. Taxonomic investigations were also performed on two strains through polyphasic methods, proposing two isolates as a novel species of the genus Gemmobacter. The findings obtained through the whole genome analyses provide genome-based evidence of complete oxidation of methane to carbon dioxide. This study provides a genetic blueprint of Gemmobacter fulva con5T and its biochemical characteristics, which help us to understand the evolutionary biology of the genus Gemmobacter.

1993 ◽  
Vol 27 (2) ◽  
pp. 243-252 ◽  
Author(s):  
A. N. Nozhevnikova ◽  
V. K. Nekrasova ◽  
V. S. Lebedev ◽  
A. B. Lifshits

Large landfills in the Soviet Union cover more than 140 thousand hectares. The gas emission intensities are extremely disproportional over the surface of these landfills. According to our data the rates of streams of the biogas components vary from 0 till 20, 46, 1.2 and 0.75 (×10−4m3 × hour −1/m2) for CH4, CO2, H2, CO, respectively. The stable carbon isotope composition of methane and carbon dioxide in the biogas of deep landfills layers is typical for methanogenesis from organic wastes, but it depends on the concentration of organic substance in the landfill ground and on the age of these landfills. In the upper layer methane becomes heavier and carbon dioxide lighter due to the microbiological oxidation processes. The most intensive methanogenesis is usually observed in the upper part of the anaerobic zone where the organic substance concentration is relatively high. The methanogenic microflora is represented by mesophilic methanobacteria, species of Methanosarcina and Methanobacterium genera are prevalent forms. At the depth of 10-100 cm from the surface intensive oxidation of methane, hydrogen and carbon monoxide is observed. The number of gas oxidizing bacteria is up to 10 cells per gram of soil. 14 species of methane oxidizing bacteria, which belong to 5 genera were iden tified. Hydrogen oxidizing bacteria belong to Alcaligenes,Pseudomonas, Paracoccus, Mycobacteriun genera. Between them psychrotrophic forms were found. It has been shown that in small landfills methane, produced in anaerobic zone, can be oxidized completely in the upper ground layer. The biogas extraction from landfills is important not only as an additional fuel source, but as a means of preventing pollution of the Earth's atmosphere.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


2011 ◽  
Vol 37 (8) ◽  
pp. 1406-1414
Author(s):  
Xiao-Yan SHI ◽  
Yan-Da ZENG ◽  
Shi-Long LI ◽  
Yu-Bo WANG ◽  
Feng-Ming MA ◽  
...  

2005 ◽  
Vol 33 (1) ◽  
pp. 134-136 ◽  
Author(s):  
J.D. Rock ◽  
J.W.B. Moir

The major aetiological agent of human bacterial meningitis is Neisseria meningitidis. During the course of disease and host colonization, the bacterium has to withstand limited oxygen availability. Nitrogen oxide and nitrogen oxyanions are thought to be present, which may constitute an alternative sink for electrons from the N. meningitidis respiratory chain. A partial denitrification pathway is encoded by the aniA nitrite reductase gene and the norB nitric oxide reductase gene. Analysis of the completed genome sequences of two N. meningitidis strains is used to generate a model for the membrane-associated respiratory chain of this organism. Analysis of aniA expression indicates it to be controlled primarily by oxygen and secondarily by nitrite. The ability of N. meningitidis to denitrify relies on microaerobic growth conditions. Here we show that under microaerobic conditions nitrite supplements oxygen as an alternative respiratory substrate.


1995 ◽  
Vol 177 (21) ◽  
pp. 6137-6143 ◽  
Author(s):  
I Suzuki ◽  
H Kikuchi ◽  
S Nakanishi ◽  
Y Fujita ◽  
T Sugiyama ◽  
...  

2009 ◽  
Vol 24 (1) ◽  
pp. 76
Author(s):  
Chie Katsuyama ◽  
Naho Kondo ◽  
Yuichi Suwa ◽  
Takao Yamagishi ◽  
Masayuki Itoh ◽  
...  

2017 ◽  
Vol 19 (3) ◽  
pp. 1189-1208 ◽  
Author(s):  
Sara Coyotzi ◽  
Andrew C. Doxey ◽  
Ian D. Clark ◽  
David R. Lapen ◽  
Philippe Van Cappellen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document