scholarly journals The State of Trace Elements (In, Cu, Ag) in Sphalerite Studied by X-Ray Absorption Spectroscopy of Synthetic Minerals

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 640 ◽  
Author(s):  
Nikolay D. Trofimov ◽  
Alexander L. Trigub ◽  
Boris R. Tagirov ◽  
Olga N. Filimonova ◽  
Polina V. Evstigneeva ◽  
...  

The oxidation state and local atomic environment of admixtures of In, Cu, and Ag in synthetic sphalerite crystals were determined by X-ray absorption spectroscopy (XAS). The sphalerite crystals doped with In, Cu, Ag, In–Cu, and In–Ag were synthesized utilizing gas transport, salt flux, and dry synthesis techniques. Oxidation states of dopants were determined using X-ray absorption near edge structure (XANES) technique. The local atomic structure was studied by X-ray absorption fine structure spectroscopy (EXAFS). The spectra were recorded at Zn, In, Ag, and Cu K-edges. In all studied samples, In was in the 3+ oxidation state and replaced Zn in the structure of sphalerite, which occurs with the expansion of the nearest coordination shells due to the large In ionic radius. In the presence of In, the oxidation state of Cu and Ag is 1+, and both metals can form an isomorphous solid solution where they substitute for Zn according to the coupled substitution scheme 2Zn2+ ↔ Me+ + In3+. Moreover, Ag K-edges EXAFS spectra fitting, combined with the results obtained for In- and Au-bearing sphalerite shows that the Me-S distances in the first coordination shell in the solid solution state are correlated with the ionic radii and increase in the order of Cu < Ag < Au. The distortion of the atomic structure increases in the same order. The distant (second and third) coordination shells of Cu and Ag in sphalerite are split into two subshells, and the splitting is more pronounced for Ag. Analysis of the EXAFS spectra, coupled with the results of DFT (Density Function Theory) simulations, showed that the In–In and Me+–In3+ clustering is absent when the metals are present in the sphalerite solid solution. Therefore, all studied admixtures (In, Cu, Ag), as well as Au, are randomly distributed in the matrix of sphalerite, where the concentration of the elements in the “invisible” form can reach a few tens wt.%.

2017 ◽  
Vol 737 ◽  
pp. 585-589 ◽  
Author(s):  
Natthapong Monarumit ◽  
Wiwat Wongkokua ◽  
Somruedee Satitkune

Sapphire, an inorganic gem-material in a variety of corundum, mainly consists of alpha-alumina (α-Al2O3) structure. The geological origins of sapphire are related to either basaltic or metamorphic rocks. The causes of the color on sapphire are some trace elements such as Cr, Fe, and Ti. It could be mentioned that Ti atoms have cooperated with Fe atoms for creating the blue color. In this study, X-ray absorption spectroscopy (XAS) technique focused on the x-ray absorption near edge structure (XANES) and the extended x-ray absorption fine structure (EXAFS) is employed to identify the oxidation state of Ti atoms and Ti-O bond length on sapphire samples. The Ti K-edge XANES and EXAFS spectra of natural sapphires were carried out using the 13-channel array germanium detector in fluorescence mode. The XANES spectra showed that the oxidation state of Ti was Ti4+ regardless of Fe content. Moreover, the Ti-O bond length on a-Al2O3 was equal to the Ti-O bond length on rutile (TiO2) analyzed from the EXAFS spectra. From these results, it could be concluded that the oxidation state of Ti atoms on natural sapphires was Ti4+ which substitutes Al3+ on the sapphire structure.


2021 ◽  
Vol 28 (2) ◽  
pp. 455-460
Author(s):  
Suchinda Sattayaporn ◽  
Somboonsup Rodporn ◽  
Pinit Kidkhunthod ◽  
Narong Chanlek ◽  
Chutarat Yonchai ◽  
...  

A well designed compact furnace has been designed for in situ X-ray absorption spectroscopy (XAS). It enables various heat ramps from 300 K to 1473 K. The furnace consists of heaters, a quartz tube, a circulated refrigerator and a power controller. It can generate ohmic heating via an induction process with tantalum filaments. The maximum heating rate exceeds 20 K min−1. A quartz tube with gas feedthroughs allows the mixing of gases and adjustment of the flow rate. The use of this compact furnace allows in situ XAS investigations to be carried out in transmission or fluorescence modes under controlled temperature and atmosphere. Moreover, the furnace is compact, light and well compatible to XAS. The furnace was used to study cationic oxidation states in Pr6O11 and NiO compounds under elevated temperature and reduced atmosphere using the in situ X-ray absorption near-edge structure (XANES) technique at beamline 5.2 SUT-NANOTEC-SLRI of the Synchrotron Light Research Institute, Thailand. At room temperature, Pr6O11 contains a mixture of Pr3+ and Pr4+ cations, resulting in an average oxidation state of +3.67. In situ XANES spectra of Pr (L 3-edge) show that the oxidation state of Pr4+ cations was totally reduced to +3.00 at 1273 K under H2 atmosphere. Considering NiO, Ni2+ species were present under ambient conditions. At 573 K, the reduction process of Ni2+ occurred. The Ni0/Ni2+ ratio increased linearly with respect to the heating temperature. Finally, the reduction process of Ni2+ was completely finished at 770 K.


1999 ◽  
Vol 5 (S2) ◽  
pp. 768-769
Author(s):  
J.A. Fortner ◽  
E.C. Buck ◽  
A.J. Kropf ◽  
A.J. Bakel ◽  
M.C. Hash ◽  
...  

We report x-ray absorption near edge structure (XANES) and extended x-ray fine structure analysis (EXAFS) spectra from the plutonium Llll and cerium Lm edges in prototype titanate ceramic hosts for disposal of surplus fissile materials. These spectra were obtained using the MRCAT beamline at the Advanced Photon Source (APS). The XANES and EXAFS results are compared with electron loss spectra (EELS) determination of oxidation state from the plutonium MlV,V and cerium MlV,V edges [1,2]. The titanate ceramics studied are based upon the hafniumpyrochlore and zirconolite mineral structures and will serve as an immobilization host, containing as much as 10 weight % fissile plutonium, and 20 weight % (natural or depleted) uranium. Similar formulations were composed using cerium as a “surrogate” element, replacing both plutonium and uranium in the ceramic matrix. We find the plutonium to be present almost entirely as Pu (IV), while the cerium is clearly in a mixed III-IV oxidation state in the surrogate ceramic.


1988 ◽  
Vol 143 ◽  
Author(s):  
Joe Wong ◽  
Glen A. Slack

The bonding and local atomic structure of a series of 3d metal-beta boron solid solution are investigated using a combination of x-ray absorption near-edge structure (XANES) and extended fine structure (EXAFS) technique utilizing intense synchrotron radiation as a light source. The corresponding metal diborides MB2, (M = Sc, Ti, V, Cr).were also measured and used to model the coordination environment of these metal sites in beta-boron.


2019 ◽  
Vol 83 (03) ◽  
pp. 435-451 ◽  
Author(s):  
Olga N. Filimonova ◽  
Alexander L. Trigub ◽  
Dmitriy E. Tonkacheev ◽  
Max S. Nickolsky ◽  
Kristina O. Kvashnina ◽  
...  

AbstractSphalerite is the main source of In – a ‘critical’ metal widely used in high-tech electronics. In this mineral the concentration of In is commonly correlated directly with Cu content. Here we use X-ray absorption spectroscopy of synthetic compounds and natural crystals in order to investigate the substitution mechanisms in sphalerites where In is present, together with the group 11 metals. All the admixtures (Au, Cu, In) are distributed homogeneously within the sphalerite matrix, but their structural and chemical states are different. In all the samples investigated In3+ replaces Zn in the structure of sphalerite. The In ligand distance increases by 0.12 Å and 0.09–0.10 Å for the 1st and 2nd coordination shells, respectively, in comparison with pure sphalerite. The In–S distance in the 3rd coordination shell is close to the one of pure sphalerite. Gold in synthetic sphalerites is coordinated with sulfur (NS = 2.4–2.5, RAu–S = 2.35 ± 0.01 Å). Our data suggest that at high Au concentrations (0.03–0.5 wt.%) the Au2S clusters predominate, with a small admixture of the Au+ solid solution with an Au–S distance of 2.5 Å. Therefore, the homogeneous character of a trace-element distribution, which is commonly observed in natural sulfides, does not confirm formation of a solid solution. In contrast to Au, the presence of Cu+ with In exists only in the solid-solution state, where it is tetrahedrally coordinated with S atoms at a distance of 2.30 ± 0.03 Å. The distant coordination shells of Cu are disordered. These results demonstrate that the group 11 metals (Cu, Ag and Au) can exist in sphalerite in the metastable solid-solution state. The solid solution forms at high temperature via the charge compensation scheme 2Zn2+↔Me++Me3+. The final state of the trace elements at ambient temperature is governed by the difference in ionic radii with the main component (Zn), and concentration of admixtures.


2019 ◽  
Vol 114 (8) ◽  
pp. 1649-1663 ◽  
Author(s):  
Olga N. Filimonova ◽  
Maximilian S. Nickolsky ◽  
Alexander L. Trigub ◽  
Dmitriy A. Chareev ◽  
Kristina O. Kvashnina ◽  
...  

Abstract Pyrite (FeS2) is a typical container of Pt in ores of magmatic and hydrothermal origin and in some carbonrich ores of sedimentary-diagenetic origin. Knowledge of the state of Pt disseminated in the matrix of pyrite, including local atomic environment (type of atoms in the nearest and distant coordination shells, coordination numbers, interatomic distances) and oxidation state, is necessary for physical-chemical modeling of platinum group element mineralization and for the improvement of Pt ore extraction and processing technologies. Here we report results of an investigation of local atomic structure of synthetic Pt-bearing pyrites by means of X-ray absorption spectroscopy (XAS). Synthesis experiments, performed at 580° and 590°C in a Pt-saturated system by means of salt-flux method, yielded crystals of pyrite with concentrations of Pt up to 4 wt %. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) showed that the distribution of Pt within the pyrite grains is of zonal character, but within the distinct zones Pt is distributed homogeneously. Negative correlation between the concentrations of Pt and Fe was observed in the synthesized pyrite grains. The slope of the correlation line corresponds to the formation of the solid solution in the Pt-Fe-S system and/or to the formation of PtS2. The XAS experiments revealed the existence of two forms of Pt in pyrite. The main form is the solid solution Pt(IV), which isomorphically substitutes for Fe. The Pt-S distance in pyrite is ~0.1 Å longer than that of Fe-S in pure pyrite. The distortion of the pyrite crystal structure disappears at R >2.5 Å. The second Pt-rich form was identified by means of high-resolution transmission electron microscopy (HRTEM) as nanosized inclusions of PtS2. Heating experiments with in situ registration of X-ray absorption spectra resulted in partial decomposition (dissolution) of PtS2 nanosized inclusions with the formation of the solid solution (Fe1–xPtx)S2. Therefore, the PtS2 nanosized particles can be considered as a quench product. Our data demonstrate that both Pt solid solution and PtS2 nanosized inclusions (at high Pt content) can exist in natural Pt-bearing pyrites.


2016 ◽  
Vol 49 (2) ◽  
pp. 385-388 ◽  
Author(s):  
Kanokwan Kanchiang ◽  
Atipong Bootchanont ◽  
Janyaporn Witthayarat ◽  
Sittichain Pramchu ◽  
Panjawan Thanasuthipitak ◽  
...  

Chrysoberyl is one of the most interesting minerals for laser applications, widely used for medical purposes, as it exhibits higher laser performance than other materials. Although its utilization has been vastly expanded, the location of transition metal impurities, especially the iron that is responsible for chrysoberyl's special optical properties, is not completely understood. The full understanding and control of these optical properties necessitates knowledge of the precise location of the transition metals inside the structure. Therefore, synchrotron X-ray absorption spectroscopy (XAS), a local structural probe sensitive to the different local geometries, was employed in this work to determine the site occupation of the Fe3+ cation in the chrysoberyl structure. An Fe K-edge X-ray absorption near-edge structure (XANES) simulation was performed in combination with density functional theory calculations of Fe3+ cations located at different locations in the chrysoberyl structure. The simulated spectra were then qualitatively compared with the measured XANES features. The comparison indicates that Fe3+ is substituted on the two different Al2+ octahedral sites with the proportion 60% on the inversion site and 40% on the reflection site. The accurate site distribution of Fe3+ obtained from this work provides useful information on the doping process for improving the efficiency of chrysoberyl as a solid-state laser material.


2018 ◽  
Vol 6 (4) ◽  
pp. 875-882 ◽  
Author(s):  
A. Fraile Rodríguez ◽  
C. Moya ◽  
M. Escoda-Torroella ◽  
A. Romero ◽  
A. Labarta ◽  
...  

Single-particle X-ray absorption spectroscopy reveals that the oxidation state and cation distribution of individual magnetite nanoparticles may be largely heterogeneous even when the macroscopic structural and magnetic response of the ensembles is uniform.


Sign in / Sign up

Export Citation Format

Share Document