scholarly journals Identification of Mackinawite and Constraints on Its Electronic Configuration Using Mössbauer Spectroscopy

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1090
Author(s):  
Christian Schröder ◽  
Moli Wan ◽  
Ian B. Butler ◽  
Alastair Tait ◽  
Stefan Peiffer ◽  
...  

The Fe(II) monosulfide mineral mackinawite (FeS) is an important phase in low-temperature iron and sulfur cycles, yet it is challenging to characterize since it often occurs in X-ray amorphous or nanoparticulate forms and is extremely sensitive to oxidation. Moreover, the electronic configuration of iron in mackinawite is still under debate. Mössbauer spectroscopy has the potential to distinguish mackinawite from other FeS phases and provide clarity on the electronic configuration, but conflicting results have been reported. We therefore conducted a Mössbauer study at 5 K of five samples of mackinawite synthesized through different pathways. Samples show two different Mössbauer patterns: a singlet that remains unsplit at all temperatures studied, and a sextet with a hyperfine magnetic field of 27(1) T at 5 K, or both. Our results suggest that the singlet corresponds to stoichiometric mackinawite (FeS), while the sextet corresponds to mackinawite with excess S (FeS1+x). Both phases show center shifts near 0.5 mm/s at 5 K. Coupled with observations from the literature, our data support non-zero magnetic moments on iron atoms in both phases, with strong itinerant spin fluctuations in stoichiometric FeS. Our results provide a clear approach for the identification of mackinawite in both laboratory and natural environments.

Author(s):  
Amel Kaibi ◽  
Abderrahim Guittoum ◽  
Nassim Souami ◽  
Mohamed Kechouane

Nanocrystalline Ni75Fe25 (Ni3Fe) powders were prepared by mechanical alloying process using a vario-planetary high-energy ball mill. The intermetallic Ni3Fe formation and different physical properties were investigated, as a function of milling time, t, (in the range 6 to 96 h range), using X-Ray Diffraction (XRD) and Mössbauer Spectroscopy techniques. X-ray diffraction were performed on the samples to understand the structural characteristics and get information about elements and phases present in the powder after different time of milling. The refinement of XRD spectra revealed the complete formation of fcc Ni (Fe) disordered solid solution after 24 h of milling time, the Fe and Ni elemental distributions are closely correlated. With increasing the milling time, the lattice parameter increases and the grains size decreases. The Mössbauer experiments were performed on the powders in order to follow the formation of Ni3Fe compound as a function of milling time. From the adjustment of Mössbauer spectra, we extracted the hyperfine parameters. The evolution of hyperfine magnetic field shows that the magnetic disordered Ni3Fe phase starts to form from 6 h of milling time and grow in intensity with milling time. For the milling time more than 24 h, only the Ni3Fe disordered phase is present with a mean hyperfine magnetic field of about 29.5 T. The interpretation of the Mossbauer spectra confirmed the results obtained by XRD.


2002 ◽  
Vol 66 (3) ◽  
pp. 421-430 ◽  
Author(s):  
J. C. Waerenborgh ◽  
J. Figueiras ◽  
A. Mateus ◽  
M. Gonçalves

AbstractIlmenites from the least-altered rocks of the Beja-Acebuches Ophiolite Complex (SE Portugal), with low Ti values and excess Fe, despite rare optical evidence of hematite exsolution, were studied by 57Fe Mössbauer spectroscopy and X-ray diffraction. According to single-crystal XRD the sequence of alternate layers characteristic of the ideal ilmenite structure is preserved, the excess Fe being accommodated in the Ti layers. No superparamagnetic oxides were detected by 57Fe Mössbauer spectroscopy. The typical spectra of bulk αFe2O3 and of Fe3+-containing ilmenite, in the paramagnetic state above 49 K and magnetically ordered at 6 K, are observed. The average degree of oxidation of the ilmenites, estimated from the chemical analysis assuming ideally stoichiometric full cation site occupancies, is also confirmed by 57Fe Mössbauer data. Since our crystal chemistry study gave no evidence of crypto-exsolution textures within the ilmenite with the observed compositions, fast cooling from magmatic temperatures and decomposition of ilmenite in supergene conditions is suggested.


2001 ◽  
Vol 13 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Tianrong Cheng ◽  
Robert Bereman ◽  
Eddy De Grave ◽  
Larry H. Bowen

Sign in / Sign up

Export Citation Format

Share Document