excess fe
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 24 (4) ◽  
pp. 365-370
Author(s):  
A. O. Torosyan ◽  
E. V. Loginova ◽  
C. G. Gagaev

Iron (Fe) deficiency and hyperglycaemia are both widely found throughout the world among pregnant women. According to the latest data from the American Diabetes Association (ADA), the prevalence of gestational diabetes mellitus (GDM) has increased and reaches 15–20%. Nowadays, there is growing evidence that a link between Fe metabolism and glucose homeostasis exists. The study of changes in the indicators of Fe metabolism in the serum of pregnant women with glucose intolerance and GDM plays an important role in expanding the understanding of the pathogenesis of these conditions. The hypothesis that excess Fe increases the risk of developing GDM has prompted us to review and evaluate the potential relationship between elevated Fe levels and the risk of developing GDM. The aim is to integrate all available data on the correlation between GDM and Fe status in the body. It is increasingly being recognised that excess Fe accumulation in the body is associated with an increased risk of diabetes. There is no available data on the relationship between serum ferritin and GDM in the Russian population, while early identification of the risk of GDM development will be of great importance for its related health effects and prevention. The role of Fe status as a GDM biomarker in high-risk populations is of interest, both for prognostic and diagnostic measures, and for therapeutic interventions. For a better understanding of whether an excess of Fe increases the risk of developing GDM, studies are needed to reveal the role of Fe in the mechanisms of GDM development.



2021 ◽  
Author(s):  
Devon Payne ◽  
Eric M. Shepard ◽  
Rachel L. Spietz ◽  
Katherine Steward ◽  
Sue Brumfield ◽  
...  

Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS 2 ) generating aqueous iron-sulfide (FeS (aq) ) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS 2 or ferrous iron (Fe(II)) and sulfide (HS - ). FeS 2 -grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS - -grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS 2 -grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS 2 -grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS 2 -grown cells. We interpret these data to indicate that, in FeS 2 -grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS (aq) ) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS 2 is the most abundant sulfide mineral in the Earth’s crust and is common in environments inhabited by methanogenic archaea. FeS 2 can be reduced by methanogens, yielding aqueous FeS (aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS 2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS 2 -grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS (aq) . These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.



2021 ◽  
Vol 103 (22) ◽  
Author(s):  
Yue Sun ◽  
Yongqiang Pan ◽  
Nan Zhou ◽  
Xiangzhuo Xing ◽  
Zhixiang Shi ◽  
...  


2021 ◽  
Vol 914 (2) ◽  
pp. 83
Author(s):  
Wei Yan ◽  
Ryan C. Hickox ◽  
Chien-Ting J. Chen ◽  
Claudio Ricci ◽  
Alberto Masini ◽  
...  
Keyword(s):  
X Ray ◽  


Author(s):  
Saradia Kar ◽  
Hans-Jörg Mai ◽  
Hadeel Khalouf ◽  
Heithem Ben Abdallah ◽  
Samantha Flachbart ◽  
...  

Abstract Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.



Author(s):  
Khalil Ganjehfard ◽  
Reza Taghiabadi ◽  
Mohammad Talafi Noghani ◽  
Mohammad Hossein Ghoncheh


2020 ◽  
Vol 11 ◽  
Author(s):  
May Sann Aung ◽  
Hiroshi Masuda

Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.



2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040051
Author(s):  
T. Watanabe ◽  
T. Otsuka ◽  
S. Hagisawa ◽  
Y. Koshika ◽  
S. Adachi ◽  
...  

Among the Fe-based superconductors, [Formula: see text] is unique in that its crystal structure is the simplest and the electron correlation level is the strongest, and thus it is important to investigate the doping [Formula: see text]-temperature [Formula: see text] phase diagram of this system. However, inevitably incorporated excess Fe currently prevents the establishment of the true phase diagram. We overcome the aforementioned significant problem via developing a new annealing method termed as “Te-annealing” wherein single crystals are annealed under Te vapor. Specifically, we conducted various magnetotransport measurements on Te-annealed superconducting [Formula: see text]. We observed that crossover from the incoherent to the coherent electronic state and opening of the pseudogap occurs at high temperatures ([Formula: see text]150 K for [Formula: see text]). This is accompanied by a more substantial pseudogap and the emergence of a phase with a multi-band nature at lower temperatures (below [Formula: see text] for [Formula: see text]) before superconductivity sets in. Based on the results, the third type electronic phase diagram in Fe-based high-[Formula: see text] superconductors is revealed.



2020 ◽  
Author(s):  
Saradia Kar ◽  
Hans-Jörg Mai ◽  
Hadeel Khalouf ◽  
Heithem Ben Abdallah ◽  
Samantha Flachbart ◽  
...  

AbstractIron (Fe) toxicity is a major challenge for plant cultivation in acidic water-logged soil environments, where lowland rice is a major staple food crop. Only few studies addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance in the studied varieties.Here, we screened 16 lowland rice varieties for excess Fe stress growth responses to identify contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. Hacha and Lachit differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation, Fe and metal contents. These responses were mirrored by differential gene expression patterns, obtained through RNA-sequencing, and corresponding GO term enrichment in tolerant versus susceptible lines. From the comparative transcriptomic profiles between Lachit and Hacha in response to excess Fe stress, individual genes of the category metal homeostasis, mainly root-expressed, may contribute to the tolerance of Lachit. 22 out of these 35 metal homeostasis genes are present in selection sweep genomic regions, in breeding signatures and/or differentiated during rice domestication. These findings will serve to design targeted Fe tolerance breeding of rice crops.Summary statementLowland rice varieties Hacha and Lachit were selected for contrasting abilities to cope with iron excess stress. Morphological and physiological phenotypes were mirrored by molecular transcriptome changes, indicating altered metal homeostasis in the root as an adaptive tolerance mechanism in Lachit.



2020 ◽  
Vol 387 ◽  
pp. 124123 ◽  
Author(s):  
Mang Xue ◽  
Zhen Wang ◽  
Shao-Fang Sun ◽  
Zhuang-Song Huang ◽  
Xin-Xin Zhang ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document