scholarly journals Quantitative Expression of the Burial Phenomenon of Deep Seafloor Manganese Nodules

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Akira Tsune

Manganese (polymetallic) nodules on the deep seafloor in the open ocean have attracted great interest because of their economic potential. Visual data on nodules found on the deep seafloor such as photographs and videos have increased exponentially with the recent progress of related technologies. These data are expected to reflect useful information for estimating these mineral resources, as well as understanding their geological origin. Although the size, number, and coverage of manganese nodules have been measured in seafloor images, the burial of such nodules has not been sufficiently examined. This paper focuses on mathematical expression of the burial of the manganese nodules and attempts to quantitatively elucidate relations among burial degree and nodule geological parameters. The results, that is, a dataset obtained by calculations of relations among parameters, are also utilized for considerations of quantitative expression of burial. These considerations are expected to contribute to a better understanding of the geological origin of manganese nodules.

2018 ◽  
Author(s):  
Tina Molodtsova ◽  
Christopher Kelley ◽  
Lénaick Menot ◽  
Les Watling

Depletion of commercially valuable minerals on land and increased need of such resources for modern electronics and manufacturing is attracting more and more attention to deep-sea mineral deposits such as cobalt crusts, manganese nodules, phosphorites, polymetallic sulfides and even deep-sea ooze. In a few years we expect intensive exploitation in the deep-sea. Being suspension feeders, corals and sponges associated with hard substrata in potential mining sites would be adversely impacted by deep-sea mining. Deep-sea corals and sponges are characterized by extremely slow growth rates and, as can be seen from fishery impacts, they may take decades to centuries to restore. At the same time, they serve as a substrate, shelter and food for a number of associated deep-sea organisms, thus increasing the cumulative impact of their loss. We summarize here the available data on coral and sponge communities of solid deep-sea ore deposits and possible mechanisms driving their diversity.


2011 ◽  
Vol 291-294 ◽  
pp. 1748-1751
Author(s):  
Ying Zhang ◽  
Chang Shui Liu ◽  
Lian Feng Gao ◽  
Zhen Guo Zhang ◽  
Peng Zhang

Rare earth metals are an important strategic resource. Due to scarce reserves, and large consumer demand, it is facing the crisis of resource depletion. Marine are the largest deposits sites in the world. In the long growth history, marine autogenic sedimentary mineral, such as polymetallic nodules, crusts with large quantities, not only contain the enrichment of Mn, Fe, Co, Cu, Ni and other valuable metals, but also contain extremely rare earth elements (REE) in the crust. Thus, in the process of developing marine mineral resources, Mn, Fe, Co, Cu, Ni and other metals are used, while it is possible for the development and utilization of the associated rare earth mineral. Marine may become a new field of rare earth resources development.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Feng Zhao ◽  
Xunxiong Jiang ◽  
Shengdong Wang ◽  
Linyong Feng ◽  
Da Li

Ocean polymetallic nodules are oxide ores rich in Ni, Co, Cu, and Mn, which are valuable metals found in deep-sea mineral resources. Such non-ferrous metals do not exist in isolation, and producing concentrates using conventional mineral separation techniques is challenging without pre-treatment. We propose an effective, environmentally-friendly recovery technology combined with solid-state metalized reduction treatment and magnetic separation to recycle these metals from ocean polymetallic nodules. We conducted single-factor tests to investigate the effects of additives, anthracite dosage, duration, and reduction temperature on metal recovery and to obtain optimal operating parameters. We found that valuable metals in ocean polymetallic nodules may be selectively reduced to a metallic state. Only a fraction of Mn was reduced to metal. The reduced metals were recovered to concentrates using magnetic separation. More than 80% of these metals were concentrated to magnetic concentrates with mass ratios of 10–15%. The recovery rates of Ni, Co, Cu, Mn, and Fe in concentrates were optimum at 86.48%, 86.74%, 83.91%, 5.63%, and 91.46%, respectively, when using CaF2 4%, anthracite 7%, SiO2 dosage 5%, and FeS 6% at 1100 °C for 2.5 h. This approach to non-ferrous metal extraction using conventional hydrometallurgical processes could be a step toward practical industrial-scale techniques for the recovery of metals from polymetallic nodules.


2012 ◽  
Vol 524-527 ◽  
pp. 408-412
Author(s):  
Zhen Guo Zhang ◽  
Chang Shui Liu ◽  
Lian Feng Gao ◽  
Ying Zhang ◽  
Guo Yuan Shi ◽  
...  

Polymetallic nodules are one of the most important sedimentary mineral resources in the ocean, in which iron, manganese, copper, cobalt, nickel and other metals are rich, and rare earth elements are rich, too. The samples are collected from the northwest continental margin of South China Sea (SCS). Their model show the similar appearance to the oceanic nodules which collected from the Pacific and Indian Ocean. They are big, regular shape and clear layers. But their geochemical characteristics show distinct difference with oceanic nodules.The samples formed by multiple millimeter-thick layers of Fe and Mn oxyhydroxides surrounding the nucleus composed of plastic marl and sediment. Massive, laminated, detrital and mottled to dendritic textural features were developed by the Fe and Mn oxyhydroxide layers.Based on the detailed study of the geochemistry and growth rate, the nodules may represent new-type ones which grow fastly in high sediment rates environment from the northwest continental margin of the SCS. The reason of the fast growth may be affected by the environmental fluctuations and the change of terrigenous sediments. Elements correlation of Mn-Fe-(Cu+Ni) suggests that the origin of the sample may be of hydrogenic. It may be show that these nodules are dominative of the special environment of the marginal sea which includes the geographical condition and the oceanic environmental factors. The average content of Rare Earth Elements (REEs) in these samples are much higher than those recorded in Earth’ crust and sedimentary rocks. The enrichment of rare earth elements is controlled by iron and manganese oxides and clay minerals in nodules, which could absorb rare earth elements from seawater and terrigenous sediment. Ce elements are highly enriched, making polymetallic nodules become the first used rare earth elements in oceanic mineral development.


Science ◽  
1974 ◽  
Vol 183 (4124) ◽  
pp. 502-503 ◽  
Author(s):  
A. L. Hammond

1992 ◽  
Vol 155 ◽  
pp. 36-41
Author(s):  
F Kalsbeek ◽  
F.G Christiansen

One of GGU's major field activities in 1991 took place in July and August in the Disko Bugt region of central West Greenland. This was the third year of field investigations under the 'Disko Bugt Project', planned for 1999–1992, with one summer's break in 1990. The project spreads over various activities and over two very different geological provinces: the Archaean-Proterozoic basement east and north-east of Disko Bugt, and the onshore part of the Cretaceous-Tertiary basin in the west, on Disko and the western part of Nugssuaq (Fig. 1). In 1989, the second year of the project, work was concentrated in the eastern basement part of the study area, and in 1991 this work was brought to conclusion. In 1992 field work (including a shallow core drilling campaign) will be concentrated in the sediments and volcanics on Nugssuaq and Svartenhuk Halvø to the north. The main aim of the Disko Bugt Project is to provide a background for the evaluation of the economic potential of the regional mineral resources, mainly in the Precambrian basement, and the hydrocarbon potential of the neighbouring basin offshore (see Kalsbeek, 1989. 1990).


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 302 ◽  
Author(s):  
Berit Lehrmann ◽  
Iain Stobbs ◽  
Paul Lusty ◽  
Bramley Murton

Over the last decade there has been an increasing interest in deep-sea mineral resources that may contribute to future raw metal supply. However, before seafloor massive sulfides (SMS) can be considered as a resource, alteration and weathering processes that may affect their metal tenor have to be fully understood. This knowledge cannot be obtained by assessing the surface exposures alone. Seafloor drilling is required to gain information about the third dimension. In 2016, three extinct seafloor massive sulfide mounds, located in the Trans-Atlantic Geotraverse (TAG) hydrothermal area of the Mid-Atlantic Ridge were drilled. A mineralogical and textural comparison of drill core and surface-grab samples revealed that in recent ceased mounds high-temperature copper assemblages typical for black smoker chimneys are still present whereas in longer extinct mounds the mineralogy is pre-dominated by an iron mineral assemblage. Zinc becomes remobilized early in the mound evolution and forms either a layer in the upper part of the mound or has been totally leached from its interior. Precipitation temperatures of sphalerite calculated using the Fe/Zn ratio can help to identify these remobilization processes. While the Fe/Zn ratios of primary sphalerites yield temperatures that are in very good agreement with fluid temperatures measured in white smokers, calculated temperatures for sphalerites affected by remobilization are too high for SMS. Overall drilling of SMS provides valuable information on the internal structure and mineralogy of the shallow sub-surface, however, additional drilling of SMS, at a greater depth, is required to fully understand the processes affecting SMS and their economic potential.


2018 ◽  
Author(s):  
Tina Molodtsova ◽  
Christopher Kelley ◽  
Lénaick Menot ◽  
Les Watling

Depletion of commercially valuable minerals on land and increased need of such resources for modern electronics and manufacturing is attracting more and more attention to deep-sea mineral deposits such as cobalt crusts, manganese nodules, phosphorites, polymetallic sulfides and even deep-sea ooze. In a few years we expect intensive exploitation in the deep-sea. Being suspension feeders, corals and sponges associated with hard substrata in potential mining sites would be adversely impacted by deep-sea mining. Deep-sea corals and sponges are characterized by extremely slow growth rates and, as can be seen from fishery impacts, they may take decades to centuries to restore. At the same time, they serve as a substrate, shelter and food for a number of associated deep-sea organisms, thus increasing the cumulative impact of their loss. We summarize here the available data on coral and sponge communities of solid deep-sea ore deposits and possible mechanisms driving their diversity.


2021 ◽  
Author(s):  
Ellen Pape ◽  
Tania Bezerra ◽  
Hendrik Gheerardyn ◽  
Marius Buydens ◽  
Amanda Kieswetter ◽  
...  

Abstract Deep seabed mining is imminent in the Clarion Clipperton Fracture Zone (CCFZ; northeast Pacific). Seabed collectors will remove the polymetallic nodules and the surrounding surface sediments, both inhabited by meiobenthos, along their path. To determine potential impacts of polymetallic nodule removal, we investigated the importance of nodule presence for sediment abundance, composition and diversity of meiobenthos, nematodes and copepods, and evaluated the existence and composition of nodule crevice meiobenthos in the Global Sea Mineral Resources (GSR) exploration contract area. Nodule-free and nodule-rich sediments displayed high biodiversity with many singletons and doubletons, potentially representing rare taxa. Nodule presence negatively influenced sediment meiobenthic abundances but did not markedly affect community composition or diversity. This is the first report on CCFZ nodule crevice meiobenthos, whose abundance related positively to nodule dimensions. Though dominated by the same taxa, the meio- and nematofauna differed between sediments and nodules regarding community and functional composition. Nevertheless, there were no taxa endemic to the nodule crevices and nodule crevice meiobenthos added only little to total small-scale (~ cm) meiobenthic abundance and diversity. We formulated environmental management recommendations at the contract area and regional (CCFZ) scale related to sampling effort, set-aside preservation and monitoring areas, and potential rehabilitation measures.


Sign in / Sign up

Export Citation Format

Share Document