scholarly journals Sponge and coral communities of potential mineral resources in the deep-sea: An overview

Author(s):  
Tina Molodtsova ◽  
Christopher Kelley ◽  
Lénaick Menot ◽  
Les Watling

Depletion of commercially valuable minerals on land and increased need of such resources for modern electronics and manufacturing is attracting more and more attention to deep-sea mineral deposits such as cobalt crusts, manganese nodules, phosphorites, polymetallic sulfides and even deep-sea ooze. In a few years we expect intensive exploitation in the deep-sea. Being suspension feeders, corals and sponges associated with hard substrata in potential mining sites would be adversely impacted by deep-sea mining. Deep-sea corals and sponges are characterized by extremely slow growth rates and, as can be seen from fishery impacts, they may take decades to centuries to restore. At the same time, they serve as a substrate, shelter and food for a number of associated deep-sea organisms, thus increasing the cumulative impact of their loss. We summarize here the available data on coral and sponge communities of solid deep-sea ore deposits and possible mechanisms driving their diversity.

2018 ◽  
Author(s):  
Tina Molodtsova ◽  
Christopher Kelley ◽  
Lénaick Menot ◽  
Les Watling

Depletion of commercially valuable minerals on land and increased need of such resources for modern electronics and manufacturing is attracting more and more attention to deep-sea mineral deposits such as cobalt crusts, manganese nodules, phosphorites, polymetallic sulfides and even deep-sea ooze. In a few years we expect intensive exploitation in the deep-sea. Being suspension feeders, corals and sponges associated with hard substrata in potential mining sites would be adversely impacted by deep-sea mining. Deep-sea corals and sponges are characterized by extremely slow growth rates and, as can be seen from fishery impacts, they may take decades to centuries to restore. At the same time, they serve as a substrate, shelter and food for a number of associated deep-sea organisms, thus increasing the cumulative impact of their loss. We summarize here the available data on coral and sponge communities of solid deep-sea ore deposits and possible mechanisms driving their diversity.


The relatively high concentrations of cobalt, nickel, and copper in deep-sea manganese nodules, such as those occurring on the sea-bed beneath the north equatorial Pacific Ocean, indicate that these marine sediments are potential ore deposits. In order to explain the strong enrichments of Ni, Cu, and Co in the nodules, the crystal chemistries and structures of the host manganese oxide minerals must be understood. Over twenty manganese(IV) oxide minerals are known, but only three predominate in manganese nodules. They are todorokite, birnessite, and delta-MnO 2 . All Mn IV oxides contain edge-shared MnO 6 octahedra linked in diverse ways, leading to a hierarchy of structure-types somewhat resembling the classification of silicates. Todorokite is deduced to contain chains of edge-shared MnOe octahedra enclosing huge tunnels, thus resembling hollandite and psilomelane. Birnessite has a layered structure with essential vacancies in the sheets of edge-shared MnO 6 octahedra, while δ-MnO 2 is a disordered birnessite. The uptake of Co into manganese nodules involves replacement of low-spin Co 3+ for Mn 4+ ions in the structures, whereas Ni 2+ and Cu 2+ substitute for Mn 2+ ions in octahedra located in the chains or between layers of edge-shared MnO 6 octahedra.


Author(s):  
O. V. Plotnikov ◽  
M. M. Kurylo ◽  
S. К. Kosharna

The problems of underground exhaustion processes on the example of iron ore deposits of Kryvbas are studied. As objects Kryvbas deposits of different geological and mining types were selected. The methodology for forecasting of the costs for post-liquidation development of licensed areas, which is based on the experience of European countries has been proposed. These ones are with the most evident signs of intensive deve­lopment and exhaustion of mineral resources. Valiavkinske Banded Iron Formation deposit is characterized by extraction intensification and dangerous changes of geological environment. The Pivdennyi Quarry with reserves of previously lost rich ores has most of exhaustion phase signs with prolongation of extraction in complicated mining conditions. The ecological-geological and geological-economic indicators of intensive exploitation of mineral deposits are compared and formulas for environmental costs calculations on objects are given.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Yan Li ◽  
Chang Liu ◽  
Sihan Su ◽  
Mengdan Li ◽  
Shaojun Liu

The international seabed area (i.e., the “Area”) is rich in mineral resources. According to the United Nations Convention on the Law of the Sea (UNCLOS) and the relevant implemented agreements, in 2012, the International Seabed Authority (ISA) began to develop the regulations for the exploitation of mineral resources in the Area. The most important part of the regulations involves determining the distribution of benefits from the exploitation of mineral resources in the Area between the ISA and the contractors. The establishment of a financial model to evaluate the economic benefits and compare the distribution scheme was the basic method relied on in the current study of payment mechanism. According to the characteristics of the exploitation project of mineral resources in the Area, the discounted cash flow method was selected to construct the financial model. Taking China’s deep-sea mineral resources development project in the Area as the background, the main parameters of the model were determined. A comparative study of similar financial models with Massachusetts Institute of Technology (MIT) and other foreign countries was carried out, in addition to a sensitivity analysis of parameters. On the basis of the assurance that the contractor’s internal rate of return was not lower than the level of the land mining enterprise, the financial model was used to calculate the internal rate of return and the revenue of royalty under different payment mechanisms and rates. The advantages and disadvantages of different payment mechanisms in the exploitation of mineral resources in the area were analyzed. Lastly, the possible impacts of deep-sea polymetallic nodule mining on Terrestrial metal markets were highlighted.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Akira Tsune

Manganese (polymetallic) nodules on the deep seafloor in the open ocean have attracted great interest because of their economic potential. Visual data on nodules found on the deep seafloor such as photographs and videos have increased exponentially with the recent progress of related technologies. These data are expected to reflect useful information for estimating these mineral resources, as well as understanding their geological origin. Although the size, number, and coverage of manganese nodules have been measured in seafloor images, the burial of such nodules has not been sufficiently examined. This paper focuses on mathematical expression of the burial of the manganese nodules and attempts to quantitatively elucidate relations among burial degree and nodule geological parameters. The results, that is, a dataset obtained by calculations of relations among parameters, are also utilized for considerations of quantitative expression of burial. These considerations are expected to contribute to a better understanding of the geological origin of manganese nodules.


Author(s):  
I. V. Sokolov ◽  
Y. G. Antipin ◽  
N. V. Gobov ◽  
I. V. Nikitin

Based on an analysis of the design principles and practice of underground mining of ore deposits, the most significant features, trends to develop and directions to enhance of underground geotechnology in the field of opening and preparation, mining systems, filling works and ore preparation have been established. The main signs of innovation - scientific research and implementation in production in order to obtain additional value, are highlighted. Various approaches to the development of innovative underground geotechnologies are shown and a methodology for their justification is formulated based on a systematic approach implemented in the framework of the concept of integrated development of mineral resources and on the principles of economic efficiency, industrial and environmental safety, completeness of subsoil development. The experience of the IM UB RAS on the development and implementation of innovative underground geotechnologies in the design and industrial operation of a number of ore deposits is given, which significantly increased the completeness and quality of ore extraction from the subsoil, increased labor productivity in sinking and stoping works, reduced capital and operating costs for ore mining and to utilize mining and processing waste in the mined-out space.


2021 ◽  
Author(s):  
Barbara Namysłowska-Wilczyńska

<p>This geostatistical study investigates the variation in the basic geological parameters of the lithologically varied deposit in mining block R-1 in the west (W) part of the Rudna Mine (the region Lubin – Sieroszowice, SW part of Poland).</p><p>Data obtained from the sampling (sample size N = 708) of excavations in block R-1 were the input for the spatial analyses. The data are the results of chemical analyses of the Cu content in the (recoverable) deposit series, carried out on channel samples and drilled core samples, taken systematically at every 15-20 m in the headings.</p><p>The deposit profile comprises various rock formations, such as: mineralized Weissliegend sandstones, intensively mineralized upper Permian dolomitic-loamy and loamy copper-bearing schists and carbonate rocks: loamy dolomite, striped dolomite and limy dolomite, of various thickness. No schists formed in some parts of block R-1, which are referred to as the schistless area. The deposit series here is considerably less mineralized (comparing with other mining blocks) even though the mineralization thickness of the sandstone and carbonate rocks reaches as much as 20 m.</p><p>The variation in the Cu content and thickness of the recoverable deposit and the estimated averages Z* of the above parameters were modelled using the variogram function and the ordinary (block) kriging technique. The efficiency of the estimations was characterized.</p><p>As part of the further spatial analyses the Z<sub>s</sub> values of the analysed deposit parameters were simulated using the conditional turning bands simulation. Confidence intervals for the values of averages based on the estimated averages Z* and averages <strong> </strong>based on the simulated values (realizations) Z<sub>s</sub>, showing the uncertainty of the estimations and simulations, were calculated.</p><p>The results of the analyses clearly indicate the shifting of the mineralized zone (the mineralizing solutions), sometimes into the sandstones while spreading throughout the floor of calcareous-dolomitic formations and sometimes into the carbonate rocks, partly entering the roof layers of sandstones. It can be concluded that the process of deposit formation and copper mineralization variation had a multiphase character and the lateral and vertical relocation of the valuable metal ores could play a significant role.</p><p>The combination of various geostatistical techniques - estimation and simulation - will allow for more effective management of natural resources of mineral resources, including copper ore deposits.</p>


Author(s):  
A. H. Church

To the geologist, the mineralogist and the chemist, two of the observations made during the voyage of the Challenger are of especial interest. One of these observations is the occurrence over vast areas of the deep sea bottom of a peculiar red clay, containing silica, peroxide of iron, and alumina. The other discovery to which I refer has been described by Sir Wyville Thomson as the occurrence throughout this red clay of nodules of “nearly pure peroxide of manganese.” To these nodules, as well us to the red clay, an organic origin has been assigned. But the immediate source of so much manganese is hard to find, for this element is by no means an abundant constituent of animal or vegetable organisms. The difficulty is, however, somewhat lessened when the manganese nodules are submitted to a more minute chemical examination. From two correspondents I have received an ample supply of these curious concretions, accompanied by a suggestion that they should be submitted to chemical analysis.


Sign in / Sign up

Export Citation Format

Share Document