scholarly journals Semi-Autogenous Wet Grinding Modeling With CFD-DEM

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 485
Author(s):  
Vladislav Lvov ◽  
Leonid Chitalov

The paper highlights the features of constructing a model of a wet semi-autogenous grinding mill based on the discrete element method and computational fluid dynamics. The model was built using Rocky DEM (v. 4.4.2, ESSS, Brazil) and Ansys Fluent (v. 2020 R2, Ansys, Inc., United States) software. A list of assumptions and boundary conditions necessary for modeling the process of wet semi-autogenous grinding by the finite element method is presented. The created model makes it possible to determine the energy-coarseness ratios of the semi-autogenous grinding (SAG) process under given conditions. To create the model in Rocky DEM the following models were used: The Linear Spring Rolling Limit rolling model, the Hysteretic Linear Spring model of the normal interaction forces and the Linear Spring Coulomb Limit for tangential forces. When constructing multiphase in Ansys Fluent, the Euler model was used with the primary phase in the form of a pulp with a given viscosity and density, and secondary phases in the form of air, crushing bodies and ore particles. The resistance of the solid phase to air and water was described by the Schiller–Naumann model, and viscosity by the realizable k-epsilon model with a dispersed multiphase turbulence model. The results of the work methods for material interaction coefficients determination were developed. A method for calculating the efficiency of the semi-autogenous grinding process based on the results of numerical simulation by the discrete element method is proposed.

2015 ◽  
Vol 775 ◽  
pp. 24-52 ◽  
Author(s):  
Y. Guo ◽  
C. Wassgren ◽  
B. Hancock ◽  
W. Ketterhagen ◽  
J. Curtis

In this study, shear flows of dry flexible fibres are numerically modelled using the discrete element method (DEM), and the effects of fibre properties on the flow behaviour and solid-phase stresses are explored. In the DEM simulations, a fibre is formed by connecting a number of spheres in a straight line using deformable and elastic bonds. The forces and moments induced by the bond deformation resist the relative normal, tangential, bending and torsional movements between two bonded spheres. The bond or deforming stiffness determines the flexibility of the fibres and the bond damping accounts for the energy dissipation in the fibre vibration. The simulation results show that elastically bonded fibres have smaller effective coefficients of restitution than rigidly connected fibres. Thus, smaller solid-phase stresses are obtained for flexible fibres, particularly with bond damping, compared with rigid fibres. Frictionless fibres tend to align with a small angle from the flow direction as the solid volume fraction increases, and fibre deformation is minimized due to the alignment. However, jamming, with a corresponding sharp stress increase, large fibre deformation and dense contact force network, occurs for fibres with friction at high solid volume fractions. It is also found that jamming is more prevalent in dense flows with larger fibre friction coefficient, rougher surface, larger stiffness and larger aspect ratio.


Author(s):  
Federico A. Tavarez ◽  
Michael E. Plesha

The Discrete Element Method (DEM) discretizes a material using rigid elements of simple shape. Each element interacts with neighboring elements through appropriate interaction laws. The number of elements is typically large and is limited by computer speed. The method has seen widespread applications to modeling particulate media and more recently to modeling solids such as concrete, ceramic, and metal. For problems with severe damage, DEM offers a number of attractive features over continuum based numerical methods, with the primary feature being a seamless transition from solid phase to particulate phase. This study illustrates the potential of DEM for modeling penetration and briefly points out its numerous advantages. A weakness of DEM is that its convergence properties are not understood. The crucial question is whether convergence is obtained as DEM element size vanishes in the limit of model refinement. The major focus of our investigation will be a careful study of convergence for modeling the degradation of a solid into fragments. Our results show that indeed convergence is obtained in several specific test problems. Moreover, elastic interelement stiffness and damping properties were proven to be particle size-independent. However, convergence in material failure due to crack growth is obtained only if the interparticle potentials are properly constructed as functions of DEM element size and bulk material properties such as elastic modulus and fracture toughness.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document