scholarly journals Strengthened Oxygen Oxidation of Ferrous Ions by A Homemade Venturi Jet Microbubble Generator towards Iron Removal in Hydrometallurgy

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1342
Author(s):  
Xinzhuang Fu ◽  
Zhen Niu ◽  
Min Lin ◽  
Ya Gao ◽  
Wei Sun ◽  
...  

Iron normally exists in the form of ferrous ion (Fe2+) in primary ore deposits of valuable metals. To remove iron from hydrometallurgical leaching solution or suspension by precipitation, ferrous ion should be oxidized to ferric ion (Fe3+) first. Due to the low oxidation rate of Fe2+ by the traditional oxygen oxidation method, industry has to use more agitating barrels, steam, and compressed gas, as well as a larger workshop area, which dramatically increases the equipment investment and operation costs. In this study, a strengthened oxygen oxidation method for Fe2+ using a homemade venturi jet microbubble generator is proposed. Microbubbles of air, oxygen, or oxygen-enriched air can be formed in the leaching solution or suspension, which can greatly improve the dissolved oxygen content in the solution and increase the gas-liquid contact area, thereby accelerating the oxygen oxidation rate of Fe2+ to Fe3+ and realizing the rapid iron removal of the leaching solution or suspension. By measuring the residual concentration of Fe2+ in the solution after oxidation reaction, it was found that the pump power, solution temperature, pH, concentration of Cu2+, and solution flow rate had great effects on the oxidation performance of the produced microbubble. By analyzing the images of the microbubbles and measuring the dissolved oxygen content in the solution, it is confirmed that the accelerated oxidation reaction rate of Fe2+ using the new proposed method was mainly due to the increase of the dissolved oxygen amount in the solution. Moreover, this method can significantly increase the purification depth of iron ion, expand production capacity, and decrease energy consumption.

2021 ◽  
Vol 186 ◽  
pp. 106216
Author(s):  
Jiande Huang ◽  
Shuangyin Liu ◽  
Shahbaz Gul Hassan ◽  
Longqin Xu ◽  
Cifeng Huang

2014 ◽  
Vol 1008-1009 ◽  
pp. 243-246
Author(s):  
Peng Fei Yuan ◽  
Guang Sheng Cao ◽  
Xiao Ma ◽  
Xiao Ping Wang ◽  
Xin Tian

Jinma company of Liaohe oilfield has carried out weak gel flooding in-depth in block Hai1 and achieved good effect. But in the process of profile and flooding, problems of gelation fluctuating and gelling rate declining seriously affected the implementation effect of the profile control and flooding project. It is researched that one of main factors affecting gelling effect of profile and flooding system is the dissolved oxygen. Aiming at this problem, this paper studies critical value affecting gelling in combination with the actual situation of polymer displacement in block Hai 1. The experimental results show that, content of dissolved oxygen affects both gelling strength and gelling time of weak gel in the way that when dissolved oxygen content is between 0mg/L and 3mg/L, low gelling strength and long gelling time are obtained, while in the range of 4mg/L-10mg/L, gelling effect is good. Two critical values are respective 1.5mg/L and 7mg/L.


CORROSION ◽  
10.5006/3697 ◽  
2021 ◽  
Author(s):  
Nicolas Larche ◽  
Perry Nice ◽  
Hisashi Amaya ◽  
Lucrezia Scoppio ◽  
Charles Leballeur ◽  
...  

In seawater injection wells, the available well tubing materials are generally Low alloy steel, Glass Reinforced Epoxy lined low alloy steel or Corrosion Resistant Alloy’s (CRA) such as super duplex stainless steel. However, in treated seawater the corrosion risk can be controlled and lower grade alloys (low alloy steel) can be considered. But for long well lifetime designs (20 years plus), then low alloy steel tubing can be challenged. In this respect recent efforts have focused attention on better dissolved oxygen control which permits the investigation and on the possible use of more cost-effective materials such as the duplex stainless steels UNS S82551, and UNS S82541 (the latter is a higher strength version, but same PRENw). Full scale testing of tubes joined together with a proprietary premium threaded connection (PCPC couplings) was performed in controlled seawater loops simulating service conditions at 30°C. The flow rate and dissolved oxygen were controlled at 5 m/s and <20ppb, respectively. Weekly dissolved oxygen excursions corresponding to 24h at 100ppb followed by 1 hour at 300ppb were performed during the 5 months exposure. Corrosion results of UNS S82551/S82541 tubing were compared to UNS S31803 and UNS S39274. In parallel, laboratory exposures of creviced coupons for parametric study were performed in dissolved oxygen-controlled cells, allowing the measurement of electrochemical potentials as function of dissolved oxygen content and the related corrosion resistance. The results showed that dissolved oxygen content should be properly controlled below critical values to avoid crevice corrosion of the lesser alloyed duplex stainless steels. The ability of UNS S82541 to recover or re-passivate after prolonged exposures to high dissolved oxygen concentrations (DOC) was also determined with both the use of full sized pipe-coupling premium connection (PCPC) test cells, and electrochemical testing involving a Remote Crevice Assembly (RCA). The re-passivation potential was investigated after different active crevice corrosion durations. The results of the study allowed to precisely define the limits of use of UNS S82541 in treated seawater, i. e. the critical DOC conditions for corrosion initiation and for re-passivation of UNS S82541. For all tested conditions, the UNS S82551/S82541 showed a rather good ability to re-passivation when normal service conditions (i. e. low dissolved oxygen) are recovered.


2015 ◽  
Vol 75 (3) ◽  
pp. 628-637 ◽  
Author(s):  
FRA Câmara ◽  
O Rocha ◽  
EKR Pessoa ◽  
S Chellappa ◽  
NT Chellappa

AbstractThe present study focuses on the structure and function of phytoplankton community during periods of marked changes in hydrological traits, influenced by an atypical climatic event (La Niña) and its impact on Armando Ribeiro Gonçalves Reservoir of Rio Grande do Norte, situated in the Caatinga biome of northeastern Brazil. The main questions addressed were: What are the effects of environmental factors on the temporal variation of Morphologically Based Functional Group (MBFG) of phytoplankton community? How does the composition of cyanobacterial species shift in relation to high and low trends of phytoplankton diversity? The samples were collected monthly during 2008-2009 and analyzed for pH, temperature, electrical conductivity, dissolved oxygen content and the nutrients, such as, nitrate-nitrogen, ammoniacal nitrogen, total nitrogen and orthophosphate. Phytoplankton samples were collected for both qualitative and quantitative analyses to evaluate species richness index and species diversity index. The data was divided into two distinct hydrodynamic periods of instability and stability. The results demonstrate considerable changes in dissolved oxygen content, water transparency and nitrogen nutrients, which directly influenced the MBFG of phytoplankton community in space and time. The instability of reservoir water was caused by heavy rainfall, which exerts atypical external disturbances. The seasonal variation of MBFG demonstrates a change in cyanobacterial composition and their diversity during instability and stability periods. MBFG VII, composed by colonial cyanobacteria with mucilage, was associated with reduced values of electrical conductance and alterations in pH. The predominance of filamentous species with heterocyst (MBFG III) occurs only during the hydrodynamic stability period and did not show significant association with analyzed parameters. The co-dominance of MBGFs III, V and VII along with high species diversity of phytoplankton community occurred during the second hydrodynamic instability period which was associated with the reduction in water temperature. It is concluded that the decrease in cyanobacterial species dominance and the general increase in the diversity of phytoplankton community are influenced by pluvial anomaly. The higher water level during the period of pluvial anomaly resulted in nutrient pulse and the mixing of water column in the reservoir, which determined the MBPG phytoplankton community distribution.


2013 ◽  
Vol 20 (12) ◽  
pp. 9006-9013 ◽  
Author(s):  
Davor Antanasijević ◽  
Viktor Pocajt ◽  
Dragan Povrenović ◽  
Aleksandra Perić-Grujić ◽  
Mirjana Ristić

Sign in / Sign up

Export Citation Format

Share Document