scholarly journals Phase Relations in MAFSH System up to 21 GPa: Implications for Water Cycles in Martian Interior

Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 559
Author(s):  
Chaowen Xu ◽  
Toru Inoue

To elucidate the water cycles in iron-rich Mars, we investigated the phase relation of a water-undersaturated (2 wt.%) analog of Martian mantle in simplified MgO-Al2O3-FeO-SiO2-H2O (MAFSH) system between 15 and 21 GPa at 900–1500 °C using a multi-anvil apparatus. Results showed that phase E coexisting with wadsleyite or ringwoodite was at least stable at 15–16.5 GPa and below 1050 °C. Phase D coexisted with ringwoodite at pressures higher than 16.5 GPa and temperatures below 1100 °C. The transition pressure of the loop at the wadsleyite-ringwoodite boundary shifted towards lower pressure in an iron-rich system compared with a hydrous pyrolite model of the Earth. Some evidence indicates that water once existed on the Martian surface on ancient Mars. The water present in the hydrous crust might have been brought into the deep interior by the convecting mantle. Therefore, water might have been transported to the deep Martian interior by hydrous minerals, such as phase E and phase D, in cold subduction plates. Moreover, it might have been stored in wadsleyite or ringwoodite after those hydrous materials decomposed when the plates equilibrated thermally with the surrounding Martian mantle.

2021 ◽  
Author(s):  
Kiyoshi Kuramoto ◽  

<p>MMX (Martian Moons eXploration) is the 3rd sample return mission of JAXA/ISAS following Hayabusa and Hayabusa2. The MMX spacecraft will be launched in 2024 by an H-III rocket and make a round trip to the Martian system ~5 years. In the proximity of the Martian moons for 3 years, MMX will observe them along with the Martian atmosphere and surrounding space and conduct multiple landings on Phobos to collect Phoboss-indigenous materials. Owing to the lack of definitive evidence, the origin of Phobos and Deimos is under debate between the two leading hypotheses: the capture of volatile-rich primordial asteroid(s) and the in-situ formation from a debris disk that generated by a giant impact onto early Mars. Whichever theory is correct, the Martian moons likely preserve key records on the evolution of the early solar system and the formation of Mars. Through close-up observations of both moons and sample return from Phobos, MMX will settle the controversy of their origin, reveal their evolution, and elucidate the early solar system evolution around the region near the snow line. Global circulation and escape of the Martian atmosphere will also be monitored to reveal basic processes that have shaped and altered the Martian surface environment. The MMX spacecraft consists of three modules with chemical propulsion systems. By releasing used modules at appropriate timings, the spacecraft mass is reduced to allow orbital tuning to quasi-satellite orbits around Phobos, landings on Phobos surface, and the escape from the Martian gravity to return to the Earth. MMX will arrive at the Martian system in 2025 and start close-up observations of Phobos from quasi-satellite orbits. Among the total of 7 mounted instruments for scientific observations, TENGOO (telescope camera) and LIDAR will conduct high-resolution topography mapping and OROCHI (multi-band visible camera), MIRS (infra-red spectrometer provided by CNES), MEGANE (gamma-ray and neutron spectrometer provided by NASA), and MSA (ion mass spectrum analyzer) will survey surface composition and its heterogeneity. Hydrous minerals and interior ice are important observational targets because they, if identified, strongly support the capture hypothesis. Data taken by these instruments will be also useful for the landing site selection and characterization. Before the first landing, a rover (provided by CNES/DLR) will be released near the sampling site to collect data on surface regolith properties to be referred for the mothership landing operation. The rover will carry cameras, miniRAD (thermal mapper), and RAX (laser Raman spectrometer) to collect data on the physical and mineralogical characteristics of the Phobos surface around the sampling site. In early 2027, Mars will come to its closest approach to the Earth which minimizes the communication delay between the spacecraft and the Earth station. Together with the timing relatively far from Sun-Mars conjunctions and the Martian equinoxes, this period is the most favorable for landing operations that need real-time communication with the ground station and solar illumination undisturbed by eclipses. MMX will use two sampling systems, the C-sampler using a coring mechanism equipped on the tip of a manipulator and the P-sampler (provided by NASA) using a pneumatic mechanism equipped on a landing leg. After the stay near Phobos, the MMX spacecraft will be transferred to Deimos-flyby orbits to conduct Deimos observations, and then the return module will depart the Martian system in 2028. During the stay in the Martian system, MMX will also conduct wide-area observations of the Martian atmosphere using imagers (OROCHI, MIRS, and TENGOO) to study the atmospheric dynamics and the water vapor and dust transport. Simultanenousely, MSA will survey ions not only released and sputtered from Phobos's surface but also escaped from the Martian upper atmosphere. CMDM (dust monitor) will continuously survey the dust flux around the moons to assess the processes of space weathering by micrometeoroid bombardments and the possible formation of dust rings along the moons’ orbits. The sample capsule will come back to the Earth in 2029. Complimentarily with remote sensing studies, returned samples will provide us strong cosmo-chemical constraints for the origin of Phobos as well as those for early solar system processes.   </p>


2015 ◽  
Vol 113 (5) ◽  
pp. 1556-1563 ◽  
Author(s):  
Freek van Ede ◽  
Stan van Pelt ◽  
Pascal Fries ◽  
Eric Maris

Neural oscillations have emerged as one of the major electrophysiological phenomena investigated in cognitive and systems neuroscience. These oscillations are typically studied with regard to their amplitude, phase, and/or phase coupling. Here we demonstrate the existence of another property that is intrinsic to neural oscillations but has hitherto remained largely unexplored in cognitive and systems neuroscience. This pertains to the notion that these oscillations show reliable diversity in their phase-relations between neighboring recording sites (phase-relation diversity). In contrast to most previous work, we demonstrate that this diversity is restricted neither to low-frequency oscillations nor to periods outside of sensory stimulation. On the basis of magnetoencephalographic (MEG) recordings in humans, we show that this diversity is prominent not only for ongoing alpha oscillations (8–12 Hz) but also for gamma oscillations (50–70 Hz) that are induced by sustained visual stimulation. We further show that this diversity provides a dimension within electrophysiological data that, provided a sufficiently high signal-to-noise ratio, does not covary with changes in amplitude. These observations place phase-relation diversity on the map as a prominent and general property of neural oscillations that, moreover, can be studied with noninvasive methods in healthy human volunteers. This opens important new avenues for investigating how neural oscillations contribute to the neural implementation of cognition and behavior.


The unaided eye can see roundish dark spots on the Moon set in a brighter back­ground. Telescopic observation of these dark spots, called maria (plural of mare , sea) reveals that they are nearly level terrain sparsely covered with craters. The brighter surroundings or terrae are from shadow measurements found to be higher, some 1 to 3 km above the maria. The terra elevations scatter widely, reaching several kilometres in the mountain ranges. The most prominent of these ranges occur as peripheral mountain chains around the near-circular maria. Examples are the Apennines, the Alps, the Carpathians, and the Altai Scarp. These arcuate chains surround the maria as the crater walls surround crater floors, an analogy that can be carried further and implies, apart from scale, a similar origin. This origin is almost certainly impact by massive objects. In the case of the impact maria and pre-mare craters, the source of the objects appear to have been a satellite ring around the Earth through which the Moon swept very early in its history, in its outward journey from its position of origin very near the Earth (Kuiper 1954, 1965). The post-mare craters are presumably mostly asteroidal (and partly comet­ary) in origin and related to the craters observed by Mariner IV on Mars. The estimated time dependencies of these two crater-forming processes are shown schematically in figure 1. A fuller discussion of this problem has been given else­where (Kuiper, Strom & Poole 1966; Kuiper 1966). The higher asteroidal impact rate on Mars, by a factor of about 15, as derived from the Mariner IV records, is interpreted as being due to the greater proximity to the asteroid ring. The num­erical factor approximately agrees with theory. Mars apparently lacks the equiva­lent of the initial excessively intense bombardment of the Moon (attributed to impacts by circumterrestrial bodies); unless, of course, the entire Martian surface has been molten and is directly comparable to the lunar maria. This does not seem probable but can at present not be ruled out; if true, the earliest surface history would have been erased. The nature of the mare surface has, during the past decade, been an object of much, perhaps too much, speculation. With the several recent successful lunar reconnaissance missions completed, the older interpretation of the maria as lava beds, based on telescopic observation, has been abundantly confirmed. Four options discussed in recent literature are analysed in Kuiper (1965, §§A, B, pp. 12–39). Among the most potent arguments for the lava cover of the maria are the prominent lava flows observed on Mare Imbrium and Mare Serenitatis, each having a characteristic colour. A map of some Mare Imbrium flows is found in figure 2.


Author(s):  
William Lowrie

Geophysics is a field of earth sciences that uses the methods of physics to investigate the complex physical properties of the Earth and the natural processes that have determined and continue to govern its evolution. ‘What is geophysics?’ explains how geophysical investigations cover a wide range of research fields—including planetary gravitational and magnetic fields and seismology—extending from surface changes that can be observed from Earth-orbiting satellites to complex behaviour in the Earth’s deep interior. The timescale of processes occurring in the Earth also has a very broad range, from earthquakes lasting a few seconds to the motions of tectonic plates that take place over tens of millions of years.


2012 ◽  
Vol 588-589 ◽  
pp. 1751-1754
Author(s):  
Sheng Mian Xie ◽  
Bi Liang Zhong ◽  
Kai Yuan Wu ◽  
Yuan Mei Wen

Based on the high-speed photography, the effect of phase relations on droplet transfer and welding seam was analyzed. To each TCGMAW (Twin-wire Co-pool Gas-shielded Metal Arc Welding) torch at four-wire welding robot, under the descriptive welding parameters, when the phase relation of the front wire and the back wire was alternate, the arcs of the two wires had no effect on each other basically; the welding seam shaped very well. When the phase relation was synchronized, the arcs attracted each other and the two arcs centralized to the middle of the two wires; the humping bead was formed. When the phase relation was random, now and then the arcs synchronized and attracted each other, and at times the arcs changed alternately and had no effect on each other; the appearance quality of the welding seam was moderate.


2011 ◽  
Vol 59 (10) ◽  
pp. 1048-1061 ◽  
Author(s):  
Antoine Mocquet ◽  
Pascal Rosenblatt ◽  
Véronique Dehant ◽  
Olivier Verhoeven

MRS Bulletin ◽  
1992 ◽  
Vol 17 (5) ◽  
pp. 30-37 ◽  
Author(s):  
A. Navrotsky ◽  
D.J. Weidner ◽  
R.C. Liebermann ◽  
C.T. Prewitt

Man has walked on the moon, sent probes to or near the surfaces of Mars and Venus, and dispatched vehicles to fly near comets, asteroids, and the outer planets and their moons. In contrast, a journey to the center of the Earth remains as unattainable and fictional as in Jules Verne's day. We know the interior of our planet from several types of evidence: direct sampling of rock brought to the surface by geologic process from depths no greater than 200 km, remote sensing especially by seismology (the study of natural or anthropogenic sound waves passing through the Earth), inferences from the chemistry of meteorites and from other geochemical arguments, and laboratory and computational simulations of the conditions at depth. The laboratory study of Earth materials at high temperatures and pressures is the subject of this review. In a sense, the basic question of deep earth geophysics is a peculiar sort of inverse problem in materials science; rather than determining the properties of a given material, one seeks to find materials, under constraints of natural elemental abundances, which have properties consistent with seismological and other geophysical observations.What are the “hard facts” about planet Earth as a material system? Its radius and mass are well constrained, as are pressure and density as a function of depth (see Figure 1). Its vertical temperature distribution is less well known, but it is clear that the interior is hot, with temperatures in the mantle reaching perhaps 3000 K and in the core perhaps 6000–7000 K.


Sign in / Sign up

Export Citation Format

Share Document