scholarly journals Deoxypodophyllotoxin Induces G2/M Cell Cycle Arrest and Apoptosis in SGC-7901 Cells and Inhibits Tumor Growth in Vivo

Molecules ◽  
2015 ◽  
Vol 20 (1) ◽  
pp. 1661-1675 ◽  
Author(s):  
Yu-Rong Wang ◽  
Yuan Xu ◽  
Zhen-Zhou Jiang ◽  
Mounia Guerram ◽  
Bin Wang ◽  
...  
2002 ◽  
Vol 49 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Justyna Gołebiewska ◽  
Piotr Rozwadowski ◽  
Jan Henryk Spodnik ◽  
Narcyz Knap ◽  
Takashi Wakabayashi ◽  
...  

We have demonstrated for the first time that the steroid metabolite, 2-methoxyestradiol (2-ME) is a powerful growth inhibitor of human osteosarcoma 143 B cell line by pleiotropic mechanisms involving cell cycle arrest at two different points and apoptosis. The ability of 2-ME to inhibit cell cycle at the respective points has been found concentration dependent. 1 microM 2-ME inhibited cell cycle at G1 phase while 10 microM 2-ME caused G2/M cell cycle arrest. As a natural estrogen metabolite 2-ME is expected to perturb the stability of microtubules (MT) in vivo analogously to Taxol--the MT binding anticancer agent. Contrary to 2-ME, Taxol induced accumulation of osteosarcoma cells in G2/M phase of cell cycle only. The presented data strongly suggest two different mechanisms of cytotoxic action of 2-ME at the level of a single cell.


2015 ◽  
Vol 43 (04) ◽  
pp. 743-756 ◽  
Author(s):  
Lian-Wen Qi ◽  
Zhiyu Zhang ◽  
Chun-Feng Zhang ◽  
Samantha Anderson ◽  
Qun Liu ◽  
...  

Chemopreventive agents can be identified from botanicals. Recently, there has been strong support for the potential of 6-shogaol, a natural compound from dietary ginger (Zingiber officinale), in cancer chemoprevention. However, whether 6-shogaol inhibits the growth of colorectal tumors in vivo remains unknown, and the underlying anticancer mechanisms have not been well characterized. In this work, we observed that 6-shogaol (15 mg/kg) significantly inhibited colorectal tumor growth in a xenograft mouse model. We show that 6-shogaol inhibited HCT-116 and SW-480 cell proliferation with IC50 of 7.5 and 10 μM, respectively. Growth of HCT-116 cells was arrested at the G2/M phase of the cell cycle, primarily mediated by the up-regulation of p53, the CDK inhibitor p21waf1/cip1 and GADD45α, and by the down-regulation of cdc2 and cdc25A. Using p53-/- and p53+/+ HCT-116 cells, we confirmed that p53/p21 was the main pathway that contributed to the G2/M cell cycle arrest by 6-shogaol. 6-Shogaol induced apoptosis, mainly through the mitochondrial pathway, and the bcl-2 family might act as a key regulator. Our results demonstrated that 6-shogaol induces cancer cell death by inducing G2/M cell cycle arrest and apoptosis. 6-Shogaol could be an active natural product in colon cancer chemoprevention.


2019 ◽  
Author(s):  
Sara Marelli ◽  
James C Williamson ◽  
Anna V Protasio ◽  
Adi Naamati ◽  
Edward JD Greenwood ◽  
...  

AbstractThe seminal description of cellular restriction factor APOBEC3G and its antagonism by HIV-1 Vif has underpinned two decades of research on the host-virus interaction. As well as APOBEC3G and its homologues, however, we have recently discovered that Vif is also able to degrade the PPP2R5 family of regulatory subunits of key cellular phosphatase PP2A (PPP2R5A-E) (Greenwood et al., 2016; Naamati et al., 2019). We now identify amino acid polymorphisms at positions 31 and 128 of HIV-1 Vif which selectively regulate the degradation of PPP2R5 family proteins. These residues covary across HIV-1 viruses in vivo, favouring depletion of PPP2R5A-E. Through analysis of point mutants and naturally occurring Vif variants, we further show that degradation of PPP2R5 family subunits is both necessary and sufficient for Vif-dependent G2/M cell cycle arrest. Antagonism of PP2A by HIV-1 Vif is therefore independent of APOBEC3 family proteins, and regulates cell cycle progression in HIV-infected cells.


2019 ◽  
Vol 11 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Li Sun ◽  
Qurat UI Ain ◽  
Ying-sheng Gao ◽  
Ghulam Jilany Khan ◽  
Sheng-tao Yuan ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 897-914
Author(s):  
Sasa Benazic ◽  
Zana Besser Silconi ◽  
Andra Jevtovic ◽  
Milena Jurisevic ◽  
Jelena Milovanovic ◽  
...  

Aim: We investigated the antitumor effects of zinc(II) complex with S-propyl thiosalicylic acid [Zn( S-pr-thiosal)2] in 4T1 murine breast cancer model. Results: The Zn( S-pr-thiosal)2 complex reduced primary tumor growth in vivo and induced tumor cell apoptosis. The Zn( S-pr-thiosal)2 complex disrupted the balance between pro- and antiapoptotic Bcl-2 family members in 4T1 cells and induced G1/S cell cycle arrest. The Zn( S-pr-thiosal)2 complex increased the percentage of p16, p21 and p27 positive 4T1 cells. There was a significantly decrease in expression of STAT3 and its targets c-Myc and cyclin D3 in 4T1 cells treated with the Zn( S-pr-thiosal)2 complex thus contributing to G1/S cell cycle arrest and/or apoptosis. Conclusion: Our data suggest that the Zn( S-pr-thiosal)2 complex restricted tumor growth through induction of mitochondrial-driven apoptosis and suppression of cell cycle progression.


2020 ◽  
Vol 19 ◽  
pp. 153303382096075
Author(s):  
Pihong Li ◽  
Luguang Liu ◽  
Xiangguo Dang ◽  
Xingsong Tian

Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.


Oncogene ◽  
2006 ◽  
Vol 26 (13) ◽  
pp. 1829-1839 ◽  
Author(s):  
L Bagella ◽  
A Sun ◽  
T Tonini ◽  
G Abbadessa ◽  
G Cottone ◽  
...  

Author(s):  
Taka-aki Matsui ◽  
Hiroaki Murata ◽  
Tomoya Sakabe ◽  
Yoshihiro Sowa ◽  
Naoyuki Horie ◽  
...  

Leukemia ◽  
2019 ◽  
Vol 34 (5) ◽  
pp. 1315-1328 ◽  
Author(s):  
Alexandre Pichard ◽  
Sara Marcatili ◽  
Jihad Karam ◽  
Julie Constanzo ◽  
Riad Ladjohounlou ◽  
...  

AbstractSome patients with B-cell non-Hodkin lymphoma Lymphoma (NHL) become refractory to rituximab (anti-CD20 antibody) therapy associated with chemotherapy. Here, the effect of the anti-CD37 antibody-radionuclide conjugate lutetium-177 (177Lu)-lilotomab (Betalutin®) was investigated in preclinical models of NHL. In SCID mice bearing DOHH2 (transformed follicular lymphoma, FL) cell xenografts, 177Lu-lilotomab significantly delayed tumor growth, even at low activity (100 MBq/kg). In athymic mice bearing OCI-Ly8 (diffuse large B-cell lymphoma, DLBCL) or Ramos (Burkitt’s lymphoma) cell xenografts, 177Lu-lilotomab activity had to be increased to 500 MBq/kg to show a significant tumor growth delay. Clonogenic and proliferation assays showed that DOHH2 cells were highly sensitive to 177Lu-lilotomab, while Ramos cells were the least sensitive, and U2932 (DLBCL), OCI-Ly8, and Rec-1 (mantle cell lymphoma) cells displayed intermediate sensitivity. The strong 177Lu-lilotomab cytotoxicity observed in DOHH2 cells correlated with reduced G2/M cell cycle arrest, lower WEE-1- and MYT-1-mediated phosphorylation of cyclin-dependent kinase-1 (CDK1), and higher apoptosis. In agreement, 177Lu-lilotomab efficacy in vitro, in vivo, and in patient samples was increased when combined with G2/M cell cycle arrest inhibitors (MK-1775 and PD-166285). These results indicate that 177Lu-lilotomab is particularly efficient in treating tumors with reduced inhibitory CDK1 phosphorylation, such as transformed FL.


Sign in / Sign up

Export Citation Format

Share Document