hct 116 cells
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 85)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ilyas Chachoua ◽  
Ilias Tzelepis ◽  
Hao Dai ◽  
Jia Pei Lim ◽  
Anna Lewandowska-Ronnegren ◽  
...  

AbstractAbnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 μm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture.


2021 ◽  
Vol 19 ◽  
Author(s):  
Yong Hua Lin ◽  
Bao Yan Zhang ◽  
Zhi Chao Chen ◽  
Jian Feng Wei

Abstract: A new β-dihydroagarofuran-type sesquiterpenoid named 1α,2α,5α,11-tetraacetoxy-8α-(trans-p-coumaroyl)-β-dihydroagarofuran (1), together with five known compounds (2-6) were isolated from the CHCl3-soluble extract of the stems of Celastrus orbiculatus. The structure of new compound was elucidated with spectroscopic physico-chemical analyses. All isolates were evaluated for in vitro cytotoxic activity against four human cancer lines including HepG2, MCF-7, A549 and HCT-116 cells. Among them, compounds 1 and 6 showed potent cytotoxic activities on HepG2 cells with IC50 values of 8.78 ± 2.31 and 10.28 ± 1.15 μM, respectively. In addition, compound 6 exhibited significant cytotoxic activity on HCT-116 cells with IC50 value of 6.37 ± 2.52 μM


2021 ◽  
Vol 177 ◽  
pp. S75
Author(s):  
Ana Obradović ◽  
Miloš Matić ◽  
Branka Ognjanović ◽  
Emilija Marinković ◽  
Bojan Božić ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7245
Author(s):  
Katarzyna Żurawska ◽  
Marcin Stokowy ◽  
Patryk Kapica ◽  
Monika Olesiejuk ◽  
Agnieszka Kudelko ◽  
...  

The addition of 2-amino-1,3,4-thiadiazole derivatives with parallel iodination of differently protected glycals has been achieved using a double molar excess of molecular iodine under mild conditions. The corresponding thiadiazole derivatives of N-glycosides were obtained in good yields and anomeric selectivity. The usage of iodine as a catalyst makes this method easy, inexpensive, and successfully useable in reactions with sugars. Thiadiazole derivatives were tested in a panel of three tumor cell lines, MCF-7, HCT116, and HeLa. These compounds initiated biological response in investigated tumor models in a different rate. The MCF-7 is resistant to the tested compounds, and the cytometry assay indicated low increase in cell numbers in the sub- G1 phase. The most sensitive are HCT-116 and HeLa cells. The thiadiazole derivatives have a pro-apoptotic effect on HCT-116 cells. In the case of the HeLa cells, an increase in the number of cells in the sub-G1- phase and the induction of apoptosis was observed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rong-Zhang He ◽  
Jing Jiang ◽  
Xinglin Hu ◽  
Ming Lei ◽  
Jia Li ◽  
...  

Abstract Background UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). Methods qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA (http://gepia.cancer-pku.cn). Results Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. Conclusion These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues.


2021 ◽  
Vol 14 (11) ◽  
pp. 1079
Author(s):  
Radoslaw Kitel ◽  
Anna Byczek-Wyrostek ◽  
Katarzyna Hopko ◽  
Anna Kasprzycka ◽  
Krzysztof Walczak

The pharmacological effects of carbon to silicon bioisosteric replacements have been widely explored in drug design and medicinal chemistry. Here, we present a systematic investigation of the impact of different silyl groups on the anticancer activity of mucobromic acid (MBA) bearing furan-2(5H)-one core. We describe a comprehensive characterization of obtained compounds with respect to their anticancer potency and selectivity towards cancer cells. All four novel compounds exert stronger antiproliferative activity than MBA. Moreover, 3b induce apoptosis in colon cancer cell lines. A detailed investigation of the mechanism of action revealed that 3b activity stems from the down-regulation of survivin and the activation of caspase-3. Furthermore, compound 3b attenuates the clonogenic potential of HCT-116 cells. Interestingly, we also found that depending on the type of the silyl group, compound selectivity towards cancer cells could be precisely controlled. Collectively, we demonstrated the utility of silyl groups for adjusting both the potency and selectivity of silicon-containing compounds. These data reveal a link between the types of silyl group and compound potency, which could have bearings for the design of novel silicon-based anticancer drugs.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 599
Author(s):  
Shiqing Jiang ◽  
E Zhang ◽  
Hang Ruan ◽  
Jiahui Ma ◽  
Xingming Zhao ◽  
...  

Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.


Author(s):  
Jiangning Zhao ◽  
Huanrong Lin ◽  
Kunsong Huang

AbstractMesenchymal stem cell–derived extracellular vesicles (MSC-EV) can transport microRNAs (miRNAs) into colorectal cancer (CRC) cells, thus to inhibit the malignant phenotype of cancer cells. Whether MSC-EV could deliver miR-34a-5p to suppress CRC development was surveyed through the research. miR-34a-5p, c-MYC, DNA methyltransferase 3a (DNMT3a), and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression were measured in CRC tissues and cell lines. miR-34a-5p and c-MYC expression were altered by transfection in HCT-116 cells. MSC-EV were transfected with miR-34a-5p- and c-MYC-related oligonucleotides and co-cultured with HCT-116 cells. HCT-116 cell growth after treatment was observed. Furthermore, the functional roles of miR-34a-5p and c-MYC were explored in vivo. The combined interactions of miR-34a-5p/c-MYC/DNMT3a/PTEN axis were assessed. miR-34a-5p and PTEN were downregulated while c-MYC and DNMT3a were upregulated in CRC. Depletion of miR-34a-5p drove while that of c-MYC restricted CRC cell growth. MSC-EV retarded CRC progression. Moreover, MSC-EV carrying overexpressed miR-34a-5p or depleted c-MYC further disrupted CRC cell progression. miR-34a-5p targeted c-MYC to regulate DNMT3a and PTEN. c-MYC overexpression abrogated EV-derived miR-34a-5p upregulation-induced effects on CRC. Restoring miR-34a-5p or depleting c-MYC in MSC-EV limited CRC tumor formation. MSC-EV-derived miR-34a-5p depresses CRC development through modulating the binding of c-MYC to DNMT3a and epigenetically regulating PTEN.


2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document