scholarly journals SYSU-6, A New 2-D Aluminophosphate Zeolite Layer Precursor

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2972 ◽  
Author(s):  
Jiang-Zhen Qiu ◽  
Long-Fei Wang ◽  
Jiuxing Jiang

Two-dimensional aluminophosphate is an important precursor of phosphate-based zeolites; a new Sun Yat-sen University No. 6 (SYSU-6) with |Hada|2[Al2(HPO4)(PO4)2] has been synthesized in the hydrothermal synthesis with organic structure-directing agent (OSDA) of N,N,3,5-tetramethyladamantan-1-amine. In this paper, SYSU-6 is characterized by single-crystal/powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, infrared and UV Raman spectroscopy, solid-state 27Al, 31P and 13C magic angle spinning (MAS) NMR spectra, and elemental analysis. The single-crystal X-ray diffraction structure indicates that SYSU-6 crystallized in the space group P21/n, with a = 8.4119(3), b = 36.9876(12), c = 12.5674(3), α = 90°, β = 108.6770(10)°, γ = 90°, V = 3704.3(2) Å3, Z = 4, R = 5.12%, for 8515 observed data (I > 2σ(I)). The structure has a new 4,12-ring layer framework topology linked by alternating AlO4 and PO4 tetrahedra. The organic molecules reside between the layers and are hydrogen-bonded to the inorganic framework. The new type of layer provides a greater opportunity to construct zeolite with novel topology.

2015 ◽  
Vol 112 (46) ◽  
pp. 14156-14161 ◽  
Author(s):  
Seung Bin Baek ◽  
Dohyun Moon ◽  
Robert Graf ◽  
Woo Jong Cho ◽  
Sung Woo Park ◽  
...  

Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π–π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.


2016 ◽  
Vol 49 (3) ◽  
pp. 771-783 ◽  
Author(s):  
Sylvain Grangeon ◽  
Francis Claret ◽  
Cédric Roosz ◽  
Tsutomu Sato ◽  
Stéphane Gaboreau ◽  
...  

The structure of nanocrystalline calcium silicate hydrates (C–S–H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction,29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the SiQ3andQ2environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of theQ3Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the SiQ3environment decreases down to 0 and is preferentially replaced by theQ2environment, which reaches 87.9 ± 2.0%. At higher ratios,Q2decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by theQ1environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C–S–H layers, at high Ca/Si ratios.


1996 ◽  
Vol 7 (7) ◽  
pp. 457-463 ◽  
Author(s):  
M. Bohner ◽  
J. LeMa�tre ◽  
A. P. LeGrand ◽  
J.-B. D'Espinose de la Caillerie ◽  
P. Belgrand

Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 177-190 ◽  
Author(s):  
M. Reinholdt ◽  
J. Miehé-Brendlé ◽  
L. Delmotte ◽  
R. Le Dred ◽  
M.-H. Tuilier

AbstractThe fluorine route is thoroughly investigated for the hydrothermal synthesis of montmorillonite in the Na2O-MgO-Al2O3-SiO2-H2O system. Using the optimal conditions suggested by Reinholdt et al. (2001) for the crystallization of pure montmorillonites with the formula Na2x(Al2(1-x)Mg2x☐)Si4O10(OH)2, several parameters (x, Mg content, duration of crystallization, F/Si atomic ratio, pH, nature of counterbalance cation) are varied independently from their ideal values. The products are analysed by various techniques (X-ray diffraction, thermogravimetric analysis-differential thermal analysis, 29Si, 27Al and 19F magic angle spinning-nuclear magnetic resonance). It appears that a pure montmorillonite can only be obtained within a narrow x range (0.10 ≤ x ≤ 0.20). The presence of F in the starting hydrogel and the crystallization time also have significant effects on the purity of the final products. It is shown that a small amount of fluorine is needed for the crystallization of pure montmorillonite phyllosilicates.


Sign in / Sign up

Export Citation Format

Share Document