scholarly journals Electrical and Electrochemical Behavior of Carbon Paste Electrodes Modified with Ionic Liquids Based in N-Octylpyridinium Bis(Trifluoromethylsulfonyl)Imide. A Theoretical and Experimental Study

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3382 ◽  
Author(s):  
Báez ◽  
Navarro ◽  
Fuenzalida ◽  
Aguirre ◽  
Arévalo ◽  
...  

In this work, we studied carbon paste electrodes (CPEs) with two kinds of binders: mineral oil or ionic liquids (IL) derived from N-substituted octyl pyridinium bis(trifluoromethylsulfonyl)imide with the substituents H-, CH3-, CN- and CF3-. The work aims to study this series of IL and determine a possible effect of the substituent of the cation in the behavior of the IL as a binder of graphite for obtaining IL-CPEs. The electrochemical response and the electrical behavior were measured by cyclic voltammetry and electrochemical impedance spectroscopy, respectively. Surprisingly, the substituent does not affect the cyclic voltammetry response because in all the cases, high resistance and high capacitive currents were obtained. The best response in terms of conductivity is obtained by CPE. In the case of impedance measurements, the substituent does not cause differences, and in all the cases, the IL-CPEs show nearly the same responses. CPE shows lower capacitance and higher resistance for diffusion compared to the IL-CPEs due to his lower porosity. The high resistance showed by the IL-CPEs by cyclic voltammetry can be attributed to poorly intermolecular forces among graphite, water, electrolyte, and ILs as demonstrated by theoretical calculations.

Measurement ◽  
2016 ◽  
Vol 92 ◽  
pp. 524-533 ◽  
Author(s):  
Achour Terbouche ◽  
Siham Lameche ◽  
Chafia Ait-Ramdane-Terbouche ◽  
Djamila Guerniche ◽  
Djahida Lerari ◽  
...  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
T. Venu Gopal ◽  
Tukiakula Madhusudana Reddy ◽  
P. Shaikshavali ◽  
G. Venkataprasad ◽  
P. Gopal

Abstract A small scale of environmentally hazardous 4-aminophenol can show significant impact on human health. Hence, in the present work, we have designed L-Valine film (Vf) modified carbon paste electrode (Vf/CPE) for the determination of 4-aminophenol. Herein, a facile in-situ L-Valine film was developed by electrochemical polymerization method onto the surface of bare carbon paste electrode (BCPE) with the help of cyclic voltammetry (CV) technique. A two-folds of electrochemical peak current enhancement was achieved at Vf/CPE in comparison with BCPE towards the determination of 4-aminophenol in optimum pH 7.0 of phosphate buffer solution (PBS). This was achieved due to the large surface area and conductive nature of Vf/CPE, which was concluded through the techniques of cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The effect of pH of buffer and scan rate studies were successfully studied. Morphological changes of BCPE and Vf/CPE was studied with the help of scanning electron microscopy (SEM). The formation of Vf on CPE was also analyzed by Fourier transform infrared (FTIR) spectra. Under the optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) values of 4-aminophenol were estimated with the aid of chronoamperometry (CA) technique and was found to be 9.8 μM and 32 μM, respectively. Finally the proposed method was found to have satisfactory repeatability, reproducibility and stability results with low relative standard deviation (RSD) values.


BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 368-381
Author(s):  
Katarzyna Skrzypczyńska ◽  
Krzysztof Kuśmierek ◽  
Andrzej Świątkowski ◽  
Lidia Dąbek ◽  
Ilona Piros

Electrochemical properties of a carbon paste electrode (graphite) modified with hazelnut and walnut shells were investigated. The adsorption of 4-chlorophenol (4-CP) on the studied materials was determined, and the hazelnut shells were found to provide a higher adsorption capacity. The hazelnut and walnut shells were used to modify the carbon paste electrode to detect 4-CP by cyclic voltammetry. Compared to an unmodified electrode, all of the new paste electrodes showed much higher sensitivity in the 4-CP detection.


Author(s):  
Mahmoud Fatehy Abdalqader Altahan ◽  
Eric Achterberg ◽  
Asmaa Galal ◽  
Magdi Abdel Azzem

Abstract Here we describe a new electrochemical sensor for PO4 3− detection in seawater. In this work, we prepared a carbon paste electrode (CPE) modified with molybdate and pretreated in 0.1 M NaOH using cyclic voltammetry (CV). The modified CPE was employed for the determination of PO4 3− in artificial seawater (35 g/L NaCl) acidified with sulfuric acid to pH 0.8. An additional cleaning step (cyclic voltammetry (CV)) of 10 cycles in 0.1 M NaOH at −0.5 to 0.5 V was required between PO4 3− determinations to dissolve the phosphomolybdic complex formed on the surface of the working electrode. Electrochemical impedance spectroscopy (EIS) results confirmed that the molybdate-modified CPE (molybdate/CPE) exhibited a low charge-transfer resistance (Rct) toward PO4 3−, and showed an improved analytical performance for different concentrations of PO4 3−. A calibration plot in the range of 0.01–5 µM with a limit of detection (LOD) of 0.003 µM was obtained. The proposed electrode demonstrated good precision (4.3% and 5.8%) for concentrations of 5 and 0.2 µM, respectively. The proposed method was employed to analyze PO4 3− in seawater samples on a research cruise in the North Sea, with results in close agreement to those obtained using conventional colorimetric measuremen


2020 ◽  
Vol 16 ◽  
Author(s):  
Marzieh Alizadeh ◽  
Marzieh Nodehi ◽  
Sadegh Salmanpour ◽  
Fatemeh Karimi ◽  
Afsaneh L. Sanati ◽  
...  

: N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid. Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic liquid in electrochemistry.


2021 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Mallikarjun Madagalam ◽  
Federica Catania ◽  
Mattia Bartoli ◽  
Alberto Tagliaferro ◽  
Sandro Carrara

In this work, new Screen Printed Carbon-paste Electrodes (SPCEs) were developed through deposition of nanostructures of HO–BiONO3 synthesized with or without surfactant additions. We performed a cyclic voltammetry study showing the improvement in performance of bismuth tailored electrodes for paracetamol sensing compared with bare SPCE. A computation study was also performed for investigating the interaction between paracetamol and bismuth species during the electron transfer process enlighten the preferential sites of interaction on the surface of modified SPEs.


Sign in / Sign up

Export Citation Format

Share Document