scholarly journals The Significance of Halogen Bonding in Ligand–Receptor Interactions: The Lesson Learned from Molecular Dynamic Simulations of the D4 Receptor

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 91 ◽  
Author(s):  
Rafał Kurczab ◽  
Katarzyna Kucwaj-Brysz ◽  
Paweł Śliwa

Recently, a computational approach combining a structure–activity relationship library containing pairs of halogenated ligands and their corresponding unsubstituted ligands (called XSAR) with QM-based molecular docking and binding free energy calculations was developed and used to search for amino acids frequently targeted by halogen bonding, also known as XB hot spots. However, the analysis of ligand–receptor complexes with halogen bonds obtained by molecular docking provides a limited ability to study the role and significance of halogen bonding in biological systems. Thus, a set of molecular dynamics simulations for the dopamine D4 receptor, recently crystallized with the antipsychotic drug nemonapride (5WIU), and the five XSAR sets were performed to verify the identified hot spots for halogen bonding, in other words, primary (V5x40), and secondary (S5x43, S5x461 and H6x55). The simulations confirmed the key role of halogen bonding with V5x40 and H6x55 and supported S5x43 and S5x461. The results showed that steric restrictions and the topology of the molecular core have a crucial impact on the stabilization of the ligand–receptor complex by halogen bonding.

2017 ◽  
Vol 13 (4) ◽  
pp. 736-749 ◽  
Author(s):  
Huiming Cao ◽  
Yuzhen Sun ◽  
Ling Wang ◽  
Chunyan Zhao ◽  
Jianjie Fu ◽  
...  

The binding of TTR with sulfated-PBDEs and OH-PBDEs shows different molecular recognition mechanisms.


2021 ◽  
Author(s):  
Chirag N. Patel ◽  
Dharmesh G. Jaiswal ◽  
Siddhi P. Jani ◽  
Naman Mangukia ◽  
Robin M. Parmar ◽  
...  

Abstract The novel SARS-CoV-2 is an etiological factor that triggers Coronavirus disease in 2019 (COVID-19) and tends to be an imminent occurrence of a pandemic. Out of all recognized solved complexes linked to SARS-CoV, Main protease (Mpro) is considered a desirable antiviral phytochemical that play a crucial role in virus assembly and possibly non-interactive capacity to adhere to any viral host protein. In this research, SARS-CoV-2 MPro was chosen as a focus for the detection of possible inhibitors using a variety of different analytical methods such as molecular docking, ADMET analysis, dynamic simulations and binding free energy measurements. Virtual screening of known natural compounds recognized Withanoside V, Withanoside VI, Racemoside B, Racemoside A and Shatavarin IX as future inhibitors of SARS-CoV-2 MPro with stronger energy binding. Also, simulations of molecular dynamics for a 100 ns time scale showed that much of the main SARS-CoV-2 MPro interactions had been maintained in the simulation routes. Binding free energy calculations using the MM/PBSA method ranked the top five possible natural compounds that can act as effective SARS-CoV-2 MPro inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chirag N. Patel ◽  
Siddhi P. Jani ◽  
Dharmesh G. Jaiswal ◽  
Sivakumar Prasanth Kumar ◽  
Naman Mangukia ◽  
...  

AbstractNovel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


Author(s):  
Rafał Kurczab

The combination of quantum mechanics/molecular mechanics-driven (QM/MM) molecular docking with binding free-energy calculations was successfully used to reproduce the X-ray geometries of protein–ligand complexes with halogen bonding. The procedure involves quantum-polarized ligand docking (QPLD) to obtain the QM-derived ligand atomic charges in the protein environment at the B3PW91/cc-pVTZ level and the MM/GBSA (generalized-Born/surface area) algorithm to calculate the binding free energies of resultant complexes. The performance was validated using a set of 106 X-ray complexes and compared with the Glide and AutoDock VinaXB scoring functions in terms of RMSD and the reconstruction of halogen-bond geometry (distance and σ-hole angle). The results revealed that docking and scoring using the QPLD–GBSA procedure outperformed the remaining scoring functions in the majority of instances. Additionally, a comparison of the orientation of the top ranked binding poses calculated using the fixed atomic charges of ligands obtained from force-field parameterization and by QM calculations in the protein environment provides strong evidence that the use of QM-derived charges is significant.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7435
Author(s):  
Dorancelly Fernandez ◽  
Andrés Restrepo-Acevedo ◽  
Cristian Rocha-Roa ◽  
Ronan Le Lagadec ◽  
Rodrigo Abonia ◽  
...  

The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R’ (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV–Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the “meta” and “para” positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document