scholarly journals Experimental and Computational Approaches for Solubility Measurement of Pyridazinone Derivative in Binary (DMSO + Water) Systems

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 171 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Sultan Alshehri ◽  
Mohd Imran ◽  
Nazrul Haq ◽  
Abdullah Alanazi ◽  
...  

The current research work was performed to evaluate the solubilization behavior, solution thermodynamics, and solvation behavior of poorly soluble pyridazinone derivative i.e., 6-phenyl-pyridazin-3(2H)-one (PPD) in various binary solvent systems of dimethyl sulfoxide (DMSO) and water using experimental and various computational approaches. The solubility of PPD in various binary solvent system of DMSO and water was investigated within the temperature range T = 298.2 K to 318.2 K at constant air pressure p = 0.1 MPa, by employing an isothermal technique. The generated solubility data of PPD was computationally represented by five different cosolvency models including van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The performance of each computational model for correlation studies was illustrated using root mean square deviations (RMSD). The overall RMSD value was obtained <2.0% for each computational model. The maximum solubility of PPD in mole fraction was recorded in neat DMSO (4.67 × 10−1 at T = 318.2 K), whereas the lowest one was obtained in neat water (5.82 × 10−6 at T = 298.2 K). The experimental solubility of PPD in mole fraction in neat DMSO was much higher than its ideal solubility, indicating the potential of DMSO for solubility enhancement of PPD. The computed values of activity coefficients showed maximum molecular interaction in PPD-DMSO compared with PPD-water. Thermodynamic evaluation showed an endothermic and entropy-driven dissolution of PPD in all the mixtures of DMSO and water. Additionally, enthalpy–entropy compensation evaluation indicated an enthalpy-driven mechanism as a driven mechanism for the solvation property of PPD.

Author(s):  
Ying Guo ◽  
Hui He ◽  
Haishuang Huang ◽  
Jingxuan Qiu ◽  
Jiaming Han ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yanpeng Zhao ◽  
Guanwen Su ◽  
Guozhao Liu ◽  
Hongyuan Wei ◽  
Leping Dang

The effects of thirteen binary solvent systems on the growth of CL-20 were studied by molecular dynamics simulation, and the effect of antisolvent properties on the solvent inhibition was systematically investigated.


Nano Research ◽  
2021 ◽  
Author(s):  
Ming Chen ◽  
Liming Xie ◽  
Changting Wei ◽  
Yuan-Qiu-Qiang Yi ◽  
Xiaolian Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3091
Author(s):  
Mohammed Ghazwani ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Hasan S. Yusufoglu ◽  
Faiyaz Shakeel

This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy–entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2–318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van’t Hoff, Apelblat, Buchowski–Ksiazczak λh, Yalkowsly–Roseman, Jouyban–Acree, and van’t Hoff–Jouyban–Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10−2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10−6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.


Biopolymers ◽  
1968 ◽  
Vol 6 (7) ◽  
pp. 973-982 ◽  
Author(s):  
Akio Nakajima ◽  
Toshio Hayashi ◽  
Minako Ohmori

Sign in / Sign up

Export Citation Format

Share Document