scholarly journals Tomatidine Represses Invasion and Migration of Human Osteosarcoma U2OS and HOS Cells by Suppression of Presenilin 1 and c-Raf–MEK–ERK Pathway

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 326 ◽  
Author(s):  
Min-Hong Hsieh ◽  
Jia-Sin Yang ◽  
Renn-Chia Lin ◽  
Yi-Hsien Hsieh ◽  
Shun-Fa Yang ◽  
...  

Osteosarcoma, which is the most prevalent malignant bone tumor, is responsible for the great majority of bone cancer-associated deaths because of its highly metastatic potential. Although tomatidine is suggested to serve as a chemosensitizer in multidrug-resistant tumors, the anti-metastatic effect of tomatidine in osteosarcoma is still unknown. Here, we tested the hypothesis that tomatidine suppresses migration and invasion, features that are associated with metastatic process in human osteosarcoma cells and also investigate its underlying pathway. Tomatidine, up to 100 μM, without cytotoxicity, inhibited the invasion and migration capabilities of human osteosarcoma U2OS and HOS cells and repressed presenilin 1 (PS-1) expression of U2OS cells. After the knockdown of PS-1, U2OS and HOS cells’ biological behaviors of cellular invasion and migratory potential were significantly reduced. While tomatidine significantly decreased the phosphorylation of c-Raf, mitogen/extracellular signal-regulated kinase (MEK), and extracellular signal-regulated protein kinase (ERK)1/2 in U2OS cells, no obvious influences on p-Jun N-terminal kinase, p38, and Akt, including their phosphorylation, were observed. In ERK 1 silencing U2 OS cells, tomatidine further enhanced the decrease of their migratory potential and invasive activities. We conclude that both PS-1 derived from U2OS and HOS cells and the c-Raf–MEK–ERK pathway contribute to cellular invasion and migration and tomatidine could inhibit the phenomenons. These findings indicate that tomatidine might be a potential candidate for anti-metastasis treatment of human osteosarcoma.

Author(s):  
Zhenhuan Jiang ◽  
Jiannong Jiang ◽  
Bizeng Zhao ◽  
Huilin Yang ◽  
Yunliang Wang ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 30
Author(s):  
Ko-Hsiu Lu ◽  
Heng-Hsiung Wu ◽  
Renn-Chia Lin ◽  
Ya-Chiu Lin ◽  
Peace Wun-Ang Lu ◽  
...  

Osteosarcoma, the most prevalent malignant bone tumor in the pediatric age group, is responsible for the great majority of cancer-associated deaths owing to its highly metastatic potential. The anti-metastatic effects of the new curcumin analogue L48H37 in human osteosarcoma are still unknown; hence, we investigated whether L48H37 represses human osteosarcoma cells’ biological behavior of migratory potential and invasive activities and attempted to delve into its underlying mechanisms. L48H37 up to 5 μM inhibited, without cytotoxicity, the motility, migration, and invasion of human osteosarcoma U2OS and MG-63 cells. In U2OS cells, the human protease array revealed an obvious decrease in urokinase plasminogen activator (uPA) expression after L48H37 treatment, and L48H37 actually reduced the level, protein and mRNA expression, and promoter activity of uPA dose-dependently. L48H37 decreased the phosphorylation of STAT3, JAK1, JAK2, and JAK3 in U2OS cells, but did not affect the phosphorylation of ERK, JNK, p38, and Akt. Using colivelin, an activator of STAT3, the L48H37-induced decrease in uPA and migratory potential could be countered as expected. Collectively, L48H37 represses the invasion and migration capabilities of U2OS and MG-63 cells by the suppression of uPA expression and the inhibition of JAK/STAT signaling. These results suggest that L48H37 may be a potential candidate for anti-metastatic treatment of human osteosarcoma.


2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


Sign in / Sign up

Export Citation Format

Share Document