scholarly journals One-Pot Iridium Catalyzed C–H Borylation/Sonogashira Cross-Coupling: Access to Borylated Aryl Alkynes

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1754 ◽  
Author(s):  
Ghayoor A. Chotana ◽  
Jose R. Montero Bastidas ◽  
Susanne L. Miller ◽  
Milton R. Smith ◽  
Robert E. Maleczka

Borylated aryl alkynes have been synthesized via one-pot iridium catalyzed C–H borylation (CHB)/Sonogashira cross-coupling of aryl bromides. Direct borylation of aryl alkynes encountered problems related to the reactivity of the alkyne under CHB conditions. However, tolerance of aryl bromides to CHB made possible a subsequent Sonogashira cross-coupling to access the desired borylated aryl alkynes.

2014 ◽  
Vol 10 ◽  
pp. 897-901 ◽  
Author(s):  
Valerica Pandarus ◽  
Geneviève Gingras ◽  
François Béland ◽  
Rosaria Ciriminna ◽  
Mario Pagliaro

Unsymmetrically coupled biaryls are synthesized in high yield starting from different aryl bromides and bis(pinacolato)diboron by carrying out the Miyaura borylation reaction followed by the Suzuki–Miyaura reaction in the same reaction pot over 1–2 mol % SiliaCat DPP-Pd. The SiliaCat DPP-Pd catalyst is air-stable and the method does not require the use of inert conditions. The use of non-toxic isopropanol or 2-butanol as reaction solvent further adds to the environmental benefits of this new green synthetic methodology.


2015 ◽  
Vol 21 (44) ◽  
pp. 15520-15524 ◽  
Author(s):  
Carlos Vila ◽  
Sara Cembellín ◽  
Valentín Hornillos ◽  
Massimo Giannerini ◽  
Martín Fañanás-Mastral ◽  
...  
Keyword(s):  
One Pot ◽  

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 723 ◽  
Author(s):  
Lidie Rousseau ◽  
Alexandre Desaintjean ◽  
Paul Knochel ◽  
Guillaume Lefèvre

Various substituted bis-(aryl)manganese species were prepared from aryl bromides by one-pot insertion of magnesium turnings in the presence of LiCl and in situ trans-metalation with MnCl2 in THF at −5 °C within 2 h. These bis-(aryl)manganese reagents undergo smooth iron-catalyzed cross-couplings using 10 mol% Fe(acac)3 with various functionalized alkenyl iodides and bromides in 1 h at 25 °C. The aryl-alkenyl cross-coupling reaction mechanism was thoroughly investigated through paramagnetic 1H-NMR, which identified the key role of tris-coordinated ate-iron(II) species in the catalytic process.


ChemInform ◽  
2016 ◽  
Vol 47 (11) ◽  
pp. no-no
Author(s):  
Carlos Vila ◽  
Sara Cembellin ◽  
Valentin Hornillos ◽  
Massimo Giannerini ◽  
Martin Fananas-Mastral ◽  
...  
Keyword(s):  
One Pot ◽  

2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2019 ◽  
Author(s):  
Miles Aukland ◽  
Mindaugas Šiaučiulis ◽  
Adam West ◽  
Gregory Perry ◽  
David Procter

<p>Aryl–aryl cross-coupling constitutes one of the most widely used procedures for the synthesis of high-value materials, ranging from pharmaceuticals to organic electronics and conducting polymers. The assembly of (hetero)biaryl scaffolds generally requires multiple steps; coupling partners must be functionalized before the key bond-forming event is considered. Thus, the development of selective C–H arylation processes in arenes, that side-step the need for prefunctionalized partners, is crucial for streamlining the construction of these key architectures. Here we report an expedient, one-pot assembly of (hetero)biaryl motifs using photocatalysis and two non-prefunctionalized arene partners. The approach is underpinned by the activation of a C–H bond in an arene coupling partner using the interrupted Pummerer reaction. A unique pairing of the organic photoredox catalyst and the intermediate dibenzothiophenium salts enables highly selective reduction in the presence of sensitive functionalities. The utility of the metal-free, one-pot strategy is exemplified by the synthesis of a bioactive natural product and the modification of complex molecules of societal importance.</p>


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2021 ◽  
Vol 19 (9) ◽  
pp. 2000-2007
Author(s):  
Erin N. Welsh ◽  
Katherine N. Robertson ◽  
Alexander W. H. Speed

A one-pot double benzyne cascade allows rapid access to 1-substituted dibenzothiophene derivatives, including cross-coupling partners and a chiral amine.


Sign in / Sign up

Export Citation Format

Share Document