scholarly journals White Matter Brain Network Research in Alzheimer’s Disease Using Persistent Features

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2472
Author(s):  
Liqun Kuang ◽  
Yan Gao ◽  
Zhongyu Chen ◽  
Jiacheng Xing ◽  
Fengguang Xiong ◽  
...  

Despite the severe social burden caused by Alzheimer’s disease (AD), no drug than can change the disease progression has been identified yet. The structural brain network research provides an opportunity to understand physiological deterioration caused by AD and its precursor, mild cognitive impairment (MCI). Recently, persistent homology has been used to study brain network dynamics and characterize the global network organization. However, it is unclear how these parameters reflect changes in structural brain networks of patients with AD or MCI. In this study, our previously proposed persistent features and various traditional graph-theoretical measures are used to quantify the topological property of white matter (WM) network in 150 subjects with diffusion tensor imaging (DTI). We found significant differences in these measures among AD, MCI, and normal controls (NC) under different brain parcellation schemes. The decreased network integration and increased network segregation are presented in AD and MCI. Moreover, the persistent homology-based measures demonstrated stronger statistical capability and robustness than traditional graph-theoretic measures, suggesting that they represent a more sensitive approach to detect altered brain structures and to better understand AD symptomology at the network level. These findings contribute to an increased understanding of structural connectome in AD and provide a novel approach to potentially track the progression of AD.

SLEEP ◽  
2019 ◽  
Vol 42 (9) ◽  
Author(s):  
Min-Hee Lee ◽  
Chang-Ho Yun ◽  
Areum Min ◽  
Yoon Ho Hwang ◽  
Seung Ku Lee ◽  
...  

Abstract Study Objectives To assess, using fractional anisotropy (FA) analysis, alterations of brain network connectivity in adults with obstructive sleep apnea (OSA). Abnormal networks could mediate clinical functional deficits and reflect brain tissue injury. Methods Structural brain networks were constructed using diffusion tensor imaging (DTI) from 165 healthy (age 57.99 ± 6.02 years, male 27.9%) and 135 OSA participants (age 59.01 ± 5.91 years, male 28.9%) and global network properties (strength, global efficiency, and local efficiency) and regional efficiency were compared between groups. We examined MRI biomarkers of brain tissue injury using FA analysis and its effect on the network properties. Results Differences between groups of interest were noted in global network properties (p-value < 0.05, corrected), and regional efficiency (p-value < 0.05, corrected) in the left middle cingulate and paracingulate gyri, right posterior cingulate gyrus, and amygdala. In FA analysis, OSA participants showed lower FA values in white matter (WM) of the right transverse temporal, anterior cingulate and paracingulate gyri, and left postcentral, middle frontal and medial frontal gyri, and the putamen. After culling fiber tracts through WM which showed significant differences in FA, we observed no group difference in network properties. Conclusions Changes in WM integrity and structural connectivity are present in OSA participants. We found that the integrity of WM affected brain network properties. Brain network analysis may improve understanding of neurocognitive deficits in OSA, enable longitudinal tracking, and provides explanations for specific symptoms and recovery kinetics.


2015 ◽  
Vol 43 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Sila Genc ◽  
Christopher E Steward ◽  
Charles B Malpas ◽  
Dennis Velakoulis ◽  
Terence J O'Brien ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2301 ◽  
Author(s):  
Liqun Kuang ◽  
Deyu Zhao ◽  
Jiacheng Xing ◽  
Zhongyu Chen ◽  
Fengguang Xiong ◽  
...  

Recent research of persistent homology in algebraic topology has shown that the altered network organization of human brain provides a promising indicator of many neuropsychiatric disorders and neurodegenerative diseases. However, the current slope-based approach may not accurately characterize changes of persistent features over graph filtration because such curves are not strictly linear. Moreover, our previous integrated persistent feature (IPF) works well on an rs-fMRI cohort while it has not yet been studied on metabolic brain networks. To address these issues, we propose a novel univariate network measurement, kernel-based IPF (KBI), based on the prior IPF, to quantify the difference between IPF curves. In our experiments, we apply the KBI index to study fluorodeoxyglucose positron emission tomography (FDG-PET) imaging data from 140 subjects with Alzheimer’s disease (AD), 280 subjects with mild cognitive impairment (MCI), and 280 healthy normal controls (NC). The results show the disruption of network integration in the progress of AD. Compared to previous persistent homology-based measures, as well as other standard graph-based measures that characterize small-world organization and modular structure, our proposed network index KBI possesses more significant group difference and better classification performance, suggesting that it may be used as an effective preclinical AD imaging biomarker.


2006 ◽  
Vol 2 ◽  
pp. S697-S698
Author(s):  
Michael W. Weiner ◽  
Yu Zhang ◽  
Geon-Ho Jahng ◽  
Bayne Whitney ◽  
Susumu Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document