scholarly journals Thermal Transport Investigation in Magneto-Radiative GO-MoS2/H2O-C2H6O2 Hybrid Nanofluid Subject to Cattaneo–Christov Model

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2592
Author(s):  
Syed Tauseef Mohyud-Din ◽  
Adnan ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Ilyas Khan ◽  
...  

Currently, thermal investigation in hybrid colloidal liquids is noteworthy. It has applications in medical sciences, drug delivery, computer chips, electronics, the paint industry, mechanical engineering and to perceive the cancer cell in human body and many more. Therefore, the study is carried out for 3D magnetized hybrid nanofluid by plugging the novel Cattaneo–Christov model and thermal radiations. The dimensionless version of the model is successfully handled via an analytical technique. From the reported analysis, it is examined that Graphene Oxide-molybdenum disulfide/C2H6O2-H2O has better heat transport characteristics and is therefore reliable for industrial and technological purposes. The temperature of Graphene Oxide GO-molybdenum disulfide/C2H6O2-H2O enhances in the presence of thermal relaxation parameter and radiative effects. Also, it is noted that rotational velocity of the hybrid nanofluid rises for stronger magnetic parameter effects. Moreover, prevailed behavior of thermal conductivity of GO-molybdenum disulfide/C2H6O2-H2O is detected which shows that hybrid nanofluids are a better conductor as compared to that of a regular nanofluid.

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 771
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Mohsen Sheikholeslami ◽  
Abderrahim Wakif ◽  
Dumitru Baleanu

The current framework tackles the buoyancy flow via a slender revolution bodies comprising Molybdenum-Disulfide Graphene Oxide generalized hybrid nanofluid embedded in a porous medium. The impact of radiation is also provoked. The outcomes are presented in this analysis to examine the behavior of hybrid nanofluid flow (HNANF) through the cone, the paraboloid, and the cylinder-shaped bodies. The opposing flow (OPPF) as well as the assisting flow (ASSF) is discussed. The leading flow equations of generalized hybrid nanoliquid are worked out numerically by utilizing bvp4c solver. This sort of the problem may meet in the automatic industries connected to geothermal and geophysical applications where the sheet heat transport occurs. The impacts of engaging controlled parameters of the transmuted system on the drag force and the velocity profile are presented through the graphs and tables. The achieved outcomes suggest that the velocity upsurges due to the dimensionless radius of the slender body parameter in case of the assisting flow and declines in the opposing flow. Additionally, an increment is observed owing to the shaped bodies as well as in type A nanofluid and type B hybrid nanofluid.


2021 ◽  
Author(s):  
Gopal Avashthi ◽  
Man Singh

Ultrasonochemically driven graphene oxide (GrO) functionalization (f) with Sulfanilamide (SA) near-edge catalyzed heterogeneous graphene oxide (h-GrO) as economic scalable f-(SA)GrO is reported. The novel in-situ H2O association was subsequently aligned...


Author(s):  
Ke Qu ◽  
Yuqi Bai ◽  
Miao Deng

Abstract The ever-increasing need for small and lightweight power sources for use in portable or wearable electronic devices has spurred the development of supercapacitors as a promising energy storage and conversion system. In this work, a simple, facile and easy-to-practice method has been developed to employ carbon paper (CP) as the support to coat molybdenum disulfide (MoS2) and graphene oxide (GO), followed by electrodeposition of polyaniline (PANI) to render CP/MoS2-GO-PANI. The preparation parameters, such as amounts of MoS2, GO and number of aniline electropolymerization cycles, have been optimized to render CP/MoS2-GO-PANI the best capacitive performance. The as-prepared optimal CP/MoS2-GO-PANI is characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The supercapacitive properties of CP/MoS2-GO-PANI as an electrode have been evaluated electrochemically via cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy testing. CP/MoS2-GO-PANI delivers a specific capacitance of 255.1 F/g at 1.0 A/g and exhibits excellent rate capability under larger current densities. Moreover, a symmetrical supercapacitor is assembled and three are connected in series to power a light-emitting diode for ~15 minutes, demonstrating the promising application potential of CP/MoS2-GO-PANI-based supercapacitor.


2022 ◽  
Vol 11 (3) ◽  
pp. 0-0

Emergence of big data in today’s world leads to new challenges for sorting strategies to analyze the data in a better way. For most of the analyzing technique, sorting is considered as an implicit attribute of the technique used. The availability of huge data has changed the way data is analyzed across industries. Healthcare is one of the notable areas where data analytics is making big changes. An efficient analysis has the potential to reduce costs of treatment and improve the quality of life in general. Healthcare industries are collecting massive amounts of data and look for the best strategies to use these numbers. This research proposes a novel non-comparison based approach to sort a large data that can further be utilized by any big data analytical technique for various analyses.


1970 ◽  
Vol 8 (4) ◽  
pp. 84-90
Author(s):  
Musa Mohd. Nordin

During the 1918 Spanish Flu pandemic, often described as the most devastating epidemic in recorded history, 1 in 5 person was infected and an estimated 50 million lives were lost. The disease was so widespread and pervasive that even the children had a tune which they skipped rope to: I had a little bird, its name was Enza, I opened the window and In-Flu-Enza. DOI: 10.3329/bjms.v8i4.4705 Bangladesh Journal of Medical Sciences Vol.8(4); October 2009 pp84-90


Sign in / Sign up

Export Citation Format

Share Document