scholarly journals Positional Isomerism in the N^N Ligand: How Much Difference Does a Methyl Group Make in [Cu(P^P)(N^N)]+ Complexes?

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2760
Author(s):  
Fabian Brunner ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The synthesis and structural characterization of 5,6′-dimethyl-2,2′-bipyridine (5,6′-Me2bpy) are reported, along with the preparations and characterizations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether, xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene). Single-crystal X-ray structure determinations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] confirmed distorted tetrahedral copper(I) coordination environments with the 5-methylpyridine ring of 5,6′-Me2bpy directed towards the (C6H4)2O unit of POP or the xanthene unit of xantphos. In the xantphos case, this preference may be attributed to C–H…π interactions involving both the 6-CH unit and the 5-methyl substituent in the 5-methylpyridine ring and the arene rings of the xanthene unit. 1H NMR spectroscopic data indicate that this ligand orientation is also preferred in solution. In solution and the solid state, [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are yellow emitters, and, for powdered samples, photoluminescence quantum yields (PLQYs) are 12 and 11%, respectively, and excited-state lifetimes are 5 and 6 μs, respectively. These values are lower than PLQY and τ values for [Cu(POP)(6,6′-Me2bpy)][PF6] and [Cu(xantphos)(6,6′-Me2bpy)][PF6], and the investigation points to the 6,6′-dimethyl substitution pattern in the bpy ligand being critical for enhancement of the PLQY.

1997 ◽  
Vol 50 (6) ◽  
pp. 539 ◽  
Author(s):  
Graham A. Bowmaker ◽  
Effendy ◽  
Robert D. Hart ◽  
John D. Kildea ◽  
Brian W. Skelton ◽  
...  

Syntheses and room-temperature single crystal X-ray structure determinations are recorded for adducts [M(EPh3)4] (ClO4), M = Cu, E = As (1), Sb (2); M = Ag, E = As (3), Sb (4), enabling comparison with analogous, previously studied MP4 and MN4 environments. The four complexes so characterized all crystallize in the familiar rhombohedral R-3 array (a ≈ 14·4, c ≈ 52 Å, hexagonal setting) with the metal and chlorine atoms located on crystallographic threefold axes. In these arrays Cu–E (axial, off axis) are 2·493(2), 2·533(1) for (1), and 2·572(1), 2·577(1) Å for (2), the disparity in the two independent M-E distances being diminished relative to those of previously studied phosphorus analogues, perhaps in consequence of increasing E size. In (3) and (4), some cation disorder is evident in respect of the ligand pnictide atom (E); for the major components Ag-E are 2·652(3), 2·680(2) in (3); 2·732(2), 2·7295(8) Å in (4). Problems associated in defining the metal atom environment geometries in the latter are, nevertheless, more satisfactorily overcome in two further determinations of nitrate salts: [Ag(SbPh3)4] (NO3) (5) is of the rhombohedral family with no cation core disorder, Ag–E (axial, off axis) being 2·720(4), 2·725(2) Å, while the structural characterization of a 1 : 4 triphenylarsine adduct of silver nitrate is recorded as its tetraethanol solvate, namely [Ag(AsPh3)4] (NO3).~ 4C2H5OH(6), monoclinic, C2/c, a 18·373(4), b 20·786(5), c 21·070(8) Å, β 108·18(3)°, Z = 4 f.u. The silver atom of the [Ag(AsPh3)4]+cation unusually lies on a crystallographic 2 (rather than a 3 ) axis of the incipiently23 (T) array, with Ag-As 2·649(2), 2·650(2) Å and As-Ag-As ranging from 108·22(4) to 111·41(6)°. The structure determination of a chloroform solvate of (2), denoted (2a), of low precision, is noted, together with the structure of an interesting artefact, isomorphous with the rhombohedral oxoanion array, modelled as [Ag(PPh3)4]2 (SiF6).py (7). Bands in the far-infrared spectra of [M(AsPh3)4] (ClO4) are assigned to v(MAs) vibrations at 119 (M = Cu) and 103 cm¯1 (M = Ag); this produces a more consistent picture of the variation in the wavenumbers of the v(ME) modes in [M(EPh3)4]+ compounds than was available previously.


1993 ◽  
Vol 48 (4) ◽  
pp. 443-451 ◽  
Author(s):  
Ion Neda ◽  
Michael Farkens ◽  
Axel Fischer ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

In the reaction of 2-chloro-1,3,5-trimethyl-4,6-dioxo-1,3,5,2 λ3-triazaphosphinane (1) with β-chloroethylamine hydrochloride and bis-(β-chloroethyl)amine hydrochloride, 1,3,5-trimethyl-2-(β-chloroethyl)amino-4,6-dioxo-1,3,5,2 λ3-triazaphosphinane (4) and 1,3,5-trimethyl-2-bis-(β-chloroethyl)amino-4,6-dioxo-1,3,5,2 λ3-triazaphosphinane (5) were obtained. The reaction of 4 and 5 with sulfur, hexafluoroacetone, tetrachloroorthobenzoquinone and 4-nitrobenzoyl azide gave the 1,3,5-trimethy1-4,6-dioxo-1,3,5,2 λ4-triazaphosphinanes 6 and 9 and the 1,3,5-trimethyl-4,6-dioxo-1,3,5,2 λ5-triazaphosphinanes 7 and 8. The characterization of 4-9 rests, especially, on their 1H, 13C and 31P NMR spectra, mass spectra and X-ray structure determinations of 4 and 5.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2647 ◽  
Author(s):  
Murat Alkan-Zambada ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The usefulness of percent volume buried (%Vbur) as a readily quantifiable property is investigated with regard to [Cu(NN)(PP)]+ complexes of interest for lighting purposes. Photoluminescence quantum yields (PLQYs) and single crystal X-ray structures of 100 reported compounds were assembled, %Vbur of the ligand systems were calculated and analyzed for correlations. We found that increased shielding of the central Cu(I) cation relying on shared contributions of both (NN) and (PP) ligand systems led to increased PLQYs. These findings are of relevance for future characterizations of Cu(I)-based complexes and their photophysical behavior in the solid-state.


1989 ◽  
Vol 42 (6) ◽  
pp. 913 ◽  
Author(s):  
LM Engelhardt ◽  
PC Healy ◽  
JD Kildea ◽  
AH White

Mixed base pyridine (py)/triphenylphosphine adducts of the copper(1) halides, CuX, have been synthesized for 1 : 1 : 1 stoichiometry for X = chloride and iodide; single-crystal X-ray structure determinations of these show them to be isomorphous and isostructural with that of the bromide recorded elsewhere, being �,�′- dihalo-bridged dimers , [(PPh3)( py )CuX2Cu( py )(PPh3)], monoclinic, C2/c, a ≈ 26.2, b ≈ 14.3, c ≈ 11 .2 � , β ≈ 95, Z = 4 dimers. The bromide has been isolated as a new monoclinic C 2/m polymorph, a 11 .279(8), b 14.268(6), c 13.858(4) �, β 109.33(6)�, Z=4 dimers, and details of its structure are also recorded. The structures of their pyridine-4-carbonitrile (pycn) analogues have also been determined and found to be also binuclear, with no cyano-copper interactions; these also are an isomorphous, isostructural series, monoclinic P21/n, a ≈ 15.4, b ≈ 8.1, c ≈ 17.9 � , β ≈ 101 �, Z = 2 dimers. In each series of dimers, one half of the dimer is crystallographically independent, the generators of the other half being twofold rotor (C2/c phase), mirror (C2/m phase) and inversion centre (P21/n phase) respectively.


1994 ◽  
Vol 47 (2) ◽  
pp. 405 ◽  
Author(s):  
PK Bharadwaj ◽  
AM Lee ◽  
BW Skelton ◽  
BR Srinivasan ◽  
AH White

Single-crystal room-temperature X-ray structure determinations of the title compounds have been carried out. The two compounds are isomorphous, and isomorphous with the previously determined iodide analogue, being monoclinic, P 21/c, a ≈ 10.0, b ≈ 14.9, c ≈ 7.8 Ǻ, β ≈ 92°, Z = 4 formula units; residuals were 0.037, 0.036 for 2197, 1654 'observed' reflections for X = Cl , Br respectively. As in the iodide, the complexes are infinite polymers, with successive bismuth atoms bridged by the two halides and one sulfur atom of the ligand , which also chelates each bismuth. The structure determination of C5H5NCONEt2]2 [Cl5Bi(NC5H5)], isostructural with its thiocarbamoyl analogue, is also recorded.


1988 ◽  
Vol 41 (3) ◽  
pp. 335 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
PC Healy ◽  
JD Kildea ◽  
AH White

Single-crystal X-ray structure determinations are recorded for two unusual trigonal planar XCuL2 species, X = halogen, L = monodentate N- base. For iodobis (2-methylquinoline)copper(I) (1) crystals are orthorhombic, P212121, a 15.079(7), b 12.592(7), c 9.585(4)Ǻ, Z 4. R was 0.028 for 1285 independent 'observed' reflections; the copper(I) environment is trigonal planar [I-Cu, 2.533(2); Cu-N, 2.034(6), 2.0l5(7)Ǻ; I-Cu-N are 119.1(2), 120.4(2) and N-Cu-N, 120.4(2)°]. For the mixed base complex bromo (3,5-dimethylpyridine)(2,4,6-trimethylpyridine )copper(I) (2), crystals are triclinic, pī , a 13.643(5), b 8.434(5), c 8.163(4)Ǻ, α 59.65(4), β 79.76(4), γ 89.68(4)°, Z 2; R was 0.046 for 1551 'observed' reflections. Br-Cu is 2.418(2); Cu-N, 1.971(5), 1.963(6)Ǻ; Br-Cu-N are 113.5(2), 110.0(2) and N-Cu-N, 136.4(3)°.


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


2007 ◽  
Vol 62 (5) ◽  
pp. 669-674 ◽  
Author(s):  
Wolfram W. Seidel ◽  
Matthias J. Meel ◽  
Thomas Lügger

Abstract Synthesis and characterization of the alkyne complexes [Co2(CO)6(L)], [W(CO)(L)3] and [Pt(PPh3)2(L)] with L = BnSC2SBn (Bn = benzyl) are described. X-Ray diffraction studies of [W(CO)(L)3] and [Co2(CO)5(L)]2 reveal that the donor ability of the sulfide group depends on the electronic and steric situation in the particular metal complex. The specific donor strength of sulfidesubstituted alkynes in their complexes is discussed considering the IR and NMR spectroscopic data.


1995 ◽  
Vol 48 (4) ◽  
pp. 807 ◽  
Author(s):  
JM Harrowfield ◽  
Y Kim ◽  
BW Skelton ◽  
AH White

As the foundation to a survey of interactions between chromium(III) and lanthanide(III) ions within the same crystal lattice, a series of complexes of stoichiometry [Cr((NH2)2sar)]- [ Ln ( dipic )3].8H2O (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane, Ln = La-Lu plus Y, dipic = pyridine-2,6-dicarboxylate) has been synthesized and structurally characterized by room-temperature single-crystal X-ray studies. An isomorphous series is found for all Ln, being triclinic, Pī , a ≈ 18.1, b ≈ 13.3, c ≈ 11 Ǻ, α ≈ 111.5, β ≈ 96.2, γ ≈ 109.2°, Z = 2 formula units, full structure determinations being recorded for Ln = La (conventional R 0.048 on |F| for No 6494 independent 'observed' [I > 3σ(I)] reflections at convergence), Ce (R 0.036 for No 8980) and Lu (R 0.046 for No 6791). A less well defined protonated series, with a 2:3 Cr/ Ln ratio, has also been characterized specifically for Ln = La [orthorhombic, Pbca , a 26.223(8), b 53.17(3), c 18.329(9) Ǻ, Z = 8; R 0.092 for No 5104], the lutetium analogue having a similar cell.


Sign in / Sign up

Export Citation Format

Share Document