cation disorder
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 16)

H-INDEX

36
(FIVE YEARS 1)

Author(s):  
hu zhang ◽  
Lu Lu ◽  
Shaobo Mi

Atomic-scale understanding of the microstructural properties of thermoelectric (TE) materials is critical for exploring the structure-property relations and enhancing the macroscopic performance of TE materials. Here, we demonstrate direct evidence...



Author(s):  
Ajay Annamareddy ◽  
Jacob Eapen

The ordered structure A 2 B 2 O 6 O’ in pyrochlores engenders twin rows of inequivalent anion sublattices each centred on alternating cations. While it is known that cation antisite disorder augments the ionic conductivity by several orders of magnitude, the local cation environment around the anions and the dynamic anion reordering during the cation disordering are not well-elucidated. Using atomistic simulations on Gd 2 Zr 2 O 7 , we first show that the anions engage in concerted hops to the neighbouring tetrahedral sites mostly along with the 〈1 0 0〉 direction while completely avoiding the octahedral sites. While the initially vacant 8 a sites start accommodating oxygen ions with increasing cation disorder, they show noticeable reluctance even at significant levels of disorder. We have also tracked both the distribution of available oxygen sites following random cation disorder, which is dependent only on cation disordering, and the probability of occupation of these sites. Interestingly, the available oxygen sites show a non-monotonic dependence on the number of B ions in the nearest neighbouring shell while the occupation probability of all the available oxygen sites increases monotonically. A tetrahedral oxygen site thus has a better probability of being occupied when it has a greater number of second neighbour B ions. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.



Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2595
Author(s):  
Binayak Mukherjee ◽  
Eleonora Isotta ◽  
Carlo Fanciulli ◽  
Narges Ataollahi ◽  
Paolo Scardi

We present the first candidate for the realization of a disorder-induced Topological Anderson Insulator in a real material system. High-energy reactive mechanical alloying produces a polymorph of Cu2ZnSnS4 with high cation disorder. Density functional theory calculations show an inverted ordering of bands at the Brillouin zone center for this polymorph, which is in contrast to its ordered phase. Adiabatic continuity arguments establish that this disordered Cu2ZnSnS4 can be connected to the closely related Cu2ZnSnSe4, which was previously predicted to be a 3D topological insulator, while band structure calculations with a slab geometry reveal the presence of robust surface states. This evidence makes a strong case in favor of a novel topological phase. As such, the study opens up a window to understanding and potentially exploiting topological behavior in a rich class of easily-synthesized multinary, disordered compounds.



2021 ◽  
Vol 507 ◽  
pp. 230315
Author(s):  
Ngoc Hung Vu ◽  
Van-Duong Dao ◽  
Won Bin Im


2021 ◽  
Author(s):  
Bianca Helm ◽  
Roman Schlem ◽  
Bjöern Wankmiller ◽  
Ananya Banik ◽  
Ajay Gautam ◽  
...  

<p>In recent years, ternary halides Li<sub>3</sub><i>MX</i><sub>6</sub> (<i>M</i> = Y, Er, In; <i>X</i> = Cl, Br, I) have garnered attention as solid electrolytes due to their wide electrochemical stability window and favorable room-temperature conductivities. In this material class, the influences of iso- or aliovalent substitutions are so far rarely studied in-depth, despite this being a common tool for correlating structure and transport properties. In this work, we investigate the impact of Zr substitution on the structure and ionic conductivity of Li<sub>3</sub>InCl<sub>6</sub> (Li<sub>3-<i>x</i></sub>In<sub>1-<i>x</i></sub>Zr<i><sub>x</sub></i>Cl<sub>6</sub> with 0 ≤ <i>x</i> ≤ 0.5) using a combination of neutron diffraction, nuclear magnetic resonance and impedance spectroscopy. Analysis of high-resolution diffraction data shows the presence of an additional tetrahedrally coordinated lithium position together with cation site-disorder, both of which have not been reported previously for Li<sub>3</sub>InCl<sub>6</sub>. This Li<sup>+</sup> position and cation disorder lead to the formation of a three-dimensional lithium ion diffusion channel, instead of the expected two-dimensional diffusion. Upon Zr<sup>4+</sup> substitution, the structure exhibits non-uniform volume changes along with an increasing number of vacancies, all of which lead to an increasing ionic conductivity in this series of solid solutions.</p>



2021 ◽  
Author(s):  
Bianca Helm ◽  
Roman Schlem ◽  
Bjöern Wankmiller ◽  
Ananya Banik ◽  
Ajay Gautam ◽  
...  

<p>In recent years, ternary halides Li<sub>3</sub><i>MX</i><sub>6</sub> (<i>M</i> = Y, Er, In; <i>X</i> = Cl, Br, I) have garnered attention as solid electrolytes due to their wide electrochemical stability window and favorable room-temperature conductivities. In this material class, the influences of iso- or aliovalent substitutions are so far rarely studied in-depth, despite this being a common tool for correlating structure and transport properties. In this work, we investigate the impact of Zr substitution on the structure and ionic conductivity of Li<sub>3</sub>InCl<sub>6</sub> (Li<sub>3-<i>x</i></sub>In<sub>1-<i>x</i></sub>Zr<i><sub>x</sub></i>Cl<sub>6</sub> with 0 ≤ <i>x</i> ≤ 0.5) using a combination of neutron diffraction, nuclear magnetic resonance and impedance spectroscopy. Analysis of high-resolution diffraction data shows the presence of an additional tetrahedrally coordinated lithium position together with cation site-disorder, both of which have not been reported previously for Li<sub>3</sub>InCl<sub>6</sub>. This Li<sup>+</sup> position and cation disorder lead to the formation of a three-dimensional lithium ion diffusion channel, instead of the expected two-dimensional diffusion. Upon Zr<sup>4+</sup> substitution, the structure exhibits non-uniform volume changes along with an increasing number of vacancies, all of which lead to an increasing ionic conductivity in this series of solid solutions.</p>



2021 ◽  
Vol 13 (16) ◽  
pp. 19541-19541
Author(s):  
Hiroaki Kobayashi ◽  
Takashi Tsukasaki ◽  
Yoshiyuki Ogasawara ◽  
Mitsuhiro Hibino ◽  
Tetsuichi Kudo ◽  
...  


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1516
Author(s):  
Shounuo Zhang ◽  
Menglu Li ◽  
Haiyan Xiao ◽  
Zijiang Liu ◽  
Xiaotao Zu

In this study, the response of Pu2Zr2O7 and La2Zr2O7 to electronic radiation is simulated, employing an ab initio molecular dynamics method. It is shown that Pu2Zr2O7 undergoes a crystalline-to-amorphous structural transition with 0.3% electronic excitation, while for La2Zr2O7, the structural amorphization occurs with 1.2% electronic excitation. During the microstructural evolution, the anion disorder further drives cation disorder and eventually results in the structural amorphization of Pu2Zr2O7 and La2Zr2O7. The difference in responses to electron radiation between Pu2Zr2O7 and La2Zr2O7 mainly results from the strong correlation effects between Pu 5f electrons and the smaller band gap of Pu2Zr2O7. These results suggest that Pu2Zr2O7 is less resistant to amorphization under local ionization rates that produce a low level of electronic excitation, since the level of the concentration of excited electrons is relatively low in Pu2Zr2O7. The presented results will advance the understanding of the radiation damage effects of zirconate pyrochlores.



Author(s):  
Arantxa Fernandes ◽  
Robert F. Moran ◽  
David McKay ◽  
Ben L. Griffiths ◽  
Anna Herlihy ◽  
...  


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
William Bassett ◽  
Elise Skalwold

Synchrotron X-ray diffraction, as well as visual observations, in a diamond anvil cell (DAC) using soft metal gaskets or slightly reducing gas environment, have revealed that the olivine-ringwoodite transition in olivines of several compositions take place in two steps: step 1: displacive restacking of the oxygen layers, followed by step 2: diffusive reordering of the cations. The initiation of the phase transition was observed at temperatures as low as 200 °C below the reported temperature for the phase transition under hydrostatic conditions. These observations, especially residual disordered cations, have important implications for deep-focus earthquakes, the ability of ringwoodite to host surprising amounts of water, and possibly the observation of a blue olivine inclusion in a natural diamond from Brazil and in a pallasitic meteorite from Russia.



Sign in / Sign up

Export Citation Format

Share Document