scholarly journals Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5836
Author(s):  
Alexander A. Larin ◽  
Dmitry M. Bystrov ◽  
Leonid L. Fershtat ◽  
Alexey A. Konnov ◽  
Nina N. Makhova ◽  
...  

In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jichuan Zhang ◽  
Yongan Feng ◽  
Richard J. Staples ◽  
Jiaheng Zhang ◽  
Jean’ne M. Shreeve

AbstractOwing to its simple preparation and high oxygen content, nitroformate [−C(NO2)3, NF] is an extremely attractive oxidant component for propellants and explosives. However, the poor thermostability of NF-based derivatives has been an unconquerable barrier for more than 150 years, thus hindering its application. In this study, the first example of a nitrogen-rich hydrogen-bonded organic framework (HOF-NF) is designed and constructed through self-assembly in energetic materials, in which NF anions are trapped in pores of the resulting framework via the dual force of ionic and hydrogen bonds from the strengthened framework. These factors lead to the decomposition temperature of the resulting HOF-NF moiety being 200 °C, which exceeds the challenge of thermal stability over 180 °C for the first time among NF-based compounds. A large number of NF-based compounds with high stabilities and excellent properties can be designed and synthesized on the basis of this work.


2012 ◽  
Vol 2 (3) ◽  
Author(s):  
Gengxin Zhang ◽  
Brandon Weeks ◽  
Xin Zhang

AbstractThe energy output performance and thermal stability of organic energetic materials have a strong dependence on the porosity, particle morphology, and micro-scale crystal structure. This paper reviews the growth habit of pure pentaerythritol tetranitrate (PETN) crystals and the effect of metal impurities on microcrystal morphology of PETN films. The pure crystal growth shows that PETN molecules diffuse on the surface and nucleate in a two-dimensional layer-by-layer fashion; the final structure is controlled by the deposition flux. Also, the effect of metal cation impurities has a strong impact on the thermal stability and crystal structure, and is dependent on the doping level.


2012 ◽  
Vol 9 (2) ◽  
pp. 583-592 ◽  
Author(s):  
Vikas D. Ghule ◽  
S. Radhakrishnan ◽  
Pandurang M. Jadhav ◽  
Surya P. Tewari

s-Triazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores s-triazine derivatives in which different -NO2, -NH2and -N3substituted azoles are attached to the triazine ring via C-N linkage. The density functional theory is used to predict geometries, heats of formation and other energetic properties. Among the designed compounds, -N3derivatives show very high heats of formation. The densities for designed compounds were predicted by using the crystal packing calculations. Introduction of -NO2group improves density as compared to -NH2and -N3, their order of increasing density can be given as NO2>N3>NH2. Analysis of the bond dissociation energies for C-NO2, C-NH2and C-N3bonds indicates that substitutions of the -N3and -NH2group are favorable for enhancing the thermal stability ofs-triazine derivatives. The nitro and azido derivatives of triazine are found to be promising candidates for the synthetic studies.


2020 ◽  
Vol 56 (10) ◽  
pp. 1493-1496 ◽  
Author(s):  
Sitong Chen ◽  
Yuji Liu ◽  
Yongan Feng ◽  
Xianjin Yang ◽  
Qinghua Zhang

Two 5,6-fused tetrazolo-pyridazine compounds were synthesized and characterized, which exhibited high thermal stability, excellent energetic properties and low mechanical sensitivity.


Molbank ◽  
10.3390/m1301 ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. M1301
Author(s):  
Egor S. Zhilin ◽  
Dmitry B. Meerov ◽  
Leonid L. Fershtat

Furoxan derivatives enriched with explosophoric functionalities are promising compounds in the preparation of novel energetic materials. Herein, a previously unknown potassium (3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)dinitromethanide (also referred to as potassium 4-dinitromethyl-3-methylfuroxanate) was synthesized via tandem nitration-reduction reactions of an available (furoxanyl)chloroxime. The structure of the synthesized compound was established by elemental analysis, IR, 1H, 13C and 14N NMR spectroscopy. Thermal stability and mechanical sensitivity of the prepared compound toward impact and friction were experimentally determined.


1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

Author(s):  
Valery V. Serushkin ◽  
Valery P. Sinditskii ◽  
Sergey A. Filatov ◽  
P. D. Kulagina ◽  
V. T. Nguyen ◽  
...  

1974 ◽  
Vol 39 (11) ◽  
pp. 3109-3116 ◽  
Author(s):  
J. Šrogl ◽  
M. Janda ◽  
I. Stibor ◽  
V. Skála ◽  
P. Trška ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document