scholarly journals Quantum Chemical Simulation of the Qy Absorption Spectrum of Zn Chlorin Aggregates for Artificial Photosynthesis

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1086
Author(s):  
Zhimo Wang ◽  
Bingbing Suo ◽  
Shiwei Yin ◽  
Wenli Zou

Zn chlorin (Znchl) is easy to synthesize and has similar optical properties to those of bacteriochlorophyll c in the nature, which is expected to be used as a light-harvesting antenna system in artificial photosynthesis. In order to further explore the optical characteristics of Znchl, various sizes of a parallel layered Znchl-aggregate model and the THF-Znchl explicit solvent monomer model were constructed in this study, and their Qy excited state properties were simulated by using time-dependent density functional theory (TDDFT) and exciton theory. For the Znchl monomer, with a combination of the explicit solvent model and the implicit solvation model based on density (SMD), the calculated Qy excitation energy agreed very well with the experimental one. The Znchl aggregates may be simplified to a Zn36 model to reproduce the experimental Qy absorption spectrum by the Förster coupling theory. The proposed Znchl aggregate model provides a good foundation for the future exploration of other properties of Znchl and simulations of artificial light-harvesting antennas. The results also indicate that J-aggregrates along z-direction, due to intermolecular coordination bonds, are the dominant factor in extending the Qy band of Znchl into the near infrared region.

2020 ◽  
Vol 10 (11) ◽  
pp. 1917-1924
Author(s):  
Tshifhiwa Ranwaha ◽  
Ife Elegbeleye ◽  
Nnditshedzeni Maluta ◽  
Rapela Maphanga

Density functional theory simulations were employed to explore the geometric, electronic and optical properties of two croconate dye molecules adsorbed on TiO2 brookite nanocluster. The calculations were based on determination of conjugate length, absorption spectra and light harvesting efficiency. The absorption energies, absorption spectra and electronic states of the dye-TiO2 complex were calculated using TD/DFT. The analysis of the excited state properties shows that CR1 and CR2 showed excitation around 580 nm and 680 nm respectively with a corresponding maximum light harvesting efficiency of 66% and 33.9% for CR1 and CR2 respectively. The absorption wavelength support that the croconate dye molecules can improve the efficiency of DSSCs as they can absorb the near infrared photons which increases the absorption range of DSSCs on the solar spectrum. The adsorption energies of CR1 and CR2 on TiO2 brookite are 3.93 eV and 5.53 eV respectively, suggesting a stable grafting of the dyes onto the surface of the semiconductor. The shifting of the absorption wavelength towards the infrared region upon adsorption gives probability of more electron transport into the large band gap of TiO2.


2021 ◽  
Author(s):  
Thomas Bathe ◽  
Chuan-Ding Dong ◽  
Stefan Schumacher

Double doping, in which a single dopant molecule induces two charge carriers in an organic semiconductor (OSC), was recently experimentally observed and promises to enhance the efficiency of molecular doping. Here we present a theoretical investigation of p-type molecular double doping in a CN6-CP:bithiophene–thienothiophene OSC system. Our analysis is based on density functional theory (DFT) calculations for the electronic ground state. In a molecular complex with two OSC oligomers and one CN6-CP dopant molecule we explicitly demonstrate double integer charge transfer and find formation of two individual polarons on the OSC molecules and a di-anion dopant molecule. We show that the vibrational modes and related infrared absorption spectrum of this complex can be traced back to those of the charged dopant and OSC molecules in their isolated forms. The near-infrared optical absorption spectrum calculated by time-dependent DFT shows both features of typical intra-molecular polaron excitations and weak inter-molecular charge transfer excitations associated with the doping-induced polaron states.


2021 ◽  
Author(s):  
Eugen Hruska ◽  
Ariel Gale ◽  
Fang Liu

Prediction of redox potentials is essential for catalysis and energy storage. Although density functional theory (DFT) calculations have enabled rapid redox potential predictions for numerous compounds, prominent errors persist compared to experimental measurements. In this work, we develop machine learning (ML) models to reduce the errors of redox potential calculations in both implicit and explicit solvent models. Training and testing of the ML correction models are based on the diverse ROP313 dataset with experimental redox potentials measured for organic and organometallic compounds in a variety of solvents. For the implicit solvent approach, our ML models can reduce both the systematic bias and the number of outliers. ML corrected redox potentials also demonstrate less sensitivity to DFT functional choice. For the explicit solvent approach, we significantly reduce the computational costs by embedding the microsolvated cluster in implicit bulk solvent, obtaining converged redox potential results with a smaller solvation shell. This combined implicit-explicit solvent model, together with GPU-accelerated quantum chemistry methods, enabled rapid generation of a large dataset of explicit-solvent-calculated redox potentials for 165 organic compounds, allowing detailed investigation of the error sources in explicit solvent redox potential calculations.


2021 ◽  
Author(s):  
Eugen Hruska ◽  
Ariel Gale ◽  
Fang Liu

Prediction of redox potentials is essential for catalysis and energy storage. Although density functional theory (DFT) calculations have enabled rapid redox potential predictions for numerous compounds, prominent errors persist compared to experimental measurements. In this work, we develop machine learning (ML) models to reduce the errors of redox potential calculations in both implicit and explicit solvent models. Training and testing of the ML correction models are based on the diverse ROP313 dataset with experimental redox potentials measured for organic and organometallic compounds in a variety of solvents. For the implicit solvent approach, our ML models can reduce both the systematic bias and the number of outliers. ML corrected redox potentials also demonstrate less sensitivity to DFT functional choice. For the explicit solvent approach, we significantly reduce the computational costs by embedding the microsolvated cluster in implicit bulk solvent, obtaining converged redox potential results with a smaller solvation shell. This combined implicit-explicit solvent model, together with GPU-accelerated quantum chemistry methods, enabled rapid generation of a large dataset of explicit-solvent-calculated redox potentials for 165 organic compounds, allowing detailed investigation of the error sources in explicit solvent redox potential calculations.


2016 ◽  
Vol 45 (39) ◽  
pp. 15517-15522 ◽  
Author(s):  
Lindsay E. Roy ◽  
Leigh R. Martin

Using Density Functional Theory calculations in combination with explicit solvent and a continuum solvent model, this work sets out to understand the coordination environment and relevant thermodynamics of La(iii)-lactate complexes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 325
Author(s):  
Bertalan Juhasz ◽  
Dawrin Pech-Puch ◽  
Jioji N. Tabudravu ◽  
Bastien Cautain ◽  
Fernando Reyes ◽  
...  

Three dermacozines, dermacozines N–P (1–3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV–Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)–UV–Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 μM, respectively.


2018 ◽  
Vol 2 (12) ◽  
pp. 2333-2339 ◽  
Author(s):  
Junhui Miao ◽  
Junxia Wang ◽  
Bin Meng ◽  
Jun Liu ◽  
Lixiang Wang

We report a new A–D–A′–D–A type small molecule acceptor with a wide absorption spectrum spanning from 300 nm to 900 nm and a bandgap of only 1.39 eV.


Sign in / Sign up

Export Citation Format

Share Document