scholarly journals Anti-Inflammatory Effect of Phytoncide in an Animal Model of Gastrointestinal Inflammation

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1895
Author(s):  
Azra Memon ◽  
Bae Yong Kim ◽  
Se-eun Kim ◽  
Yuliya Pyao ◽  
Yeong-Geun Lee ◽  
...  

Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.

2018 ◽  
Vol 99 ◽  
pp. 697-703 ◽  
Author(s):  
Thaise Boeing ◽  
Priscila de Souza ◽  
Tiago José Bonomini ◽  
Luísa Nathália Bolda Mariano ◽  
Lincon Bordignon Somensi ◽  
...  

Planta Medica ◽  
2002 ◽  
Vol 68 (3) ◽  
pp. 268-271 ◽  
Author(s):  
Tie Hong ◽  
Guang-Bi Jin ◽  
Shigefumi Cho ◽  
Jong-Chol Cyong

2010 ◽  
Vol 56 (6) ◽  
pp. 1663-1671 ◽  
Author(s):  
Tomohisa Takagi ◽  
Yuji Naito ◽  
Kazuhiko Uchiyama ◽  
Takahiro Suzuki ◽  
Ikuhiro Hirata ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Dan-Dan Zhang ◽  
Hong Zhang ◽  
Yuan-zhi Lao ◽  
Rong Wu ◽  
Jin-wen Xu ◽  
...  

GarciniaLinn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE’s capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document