p38mapk signaling
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 60)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-2
Author(s):  
Yuan Chen ◽  
Kangquan Shou ◽  
Chunlong Gong ◽  
Huarui Yang ◽  
Yi Yang ◽  
...  


2021 ◽  
Author(s):  
Bin Nie ◽  
Hui Jiang ◽  
Hong Chen ◽  
Qiong Liu

Abstract Background: Dexmedetomidine (DEX) has showed significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. Our present study aimed to explore the effect of DEX on hyperalgesia with the involvement of p38MAPK signaling pathway a rat model of monoarthritis (MA).Methods: MA rat model was induced by injection of Complete Freund's Adjuvant (CFA). Pathological changes of ma rats were observed by HE staining and Safranin-O/Fast Green staining. Ankle circumference, paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) was measured to judge the degree of hyperalgesia in MA rats. Immunohistochemistry and ELISA were applied to observe the degree of inflammation in rats. Western blot analysis was conducted to detect expression of p38MAPK signaling pathway-related factors. The mechanism of p38MAPK signaling pathway in MA rats was observed via treatment of Anisomycin or SB203580 combined with DEX.Results: After 8 h of CFA induction, joint swelling and hyperalgesia occurred in rats. There were obvious pathological changes in the joint cavity, the joint cavity space became narrow and synovial bursa became rough. A large number of inflammatory cell infiltration was observed under microscope. After injection of DEX and SB203580, PWT and PWL was prolonged, the expression of serum inflammatory factors was decreased, and the expression of p38MAPK signaling pathway-related factors was decreased; while all the detected indexes were recovered in MA rats after treated with DEX and Anisomycin.Conclusions: Our study provided evidence that DEX could alleviate hyperalgesia in arthritis rats through inhibition of the p38MAPK signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haijun Zhao ◽  
Yanhui He

Background: Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. MicroRNAs (miRNAs), members of non-coding RNAs, have been frequently reported to regulate various diseases including DR. MiR-124-3p is involved in DR based on bioinformatics. The current study aimed to investigate the role of miR-124-3p in high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs), an in vitro model of DR.Methods: Bioinformatics analysis was applied to reveal the targets downstream miR-124-3p. A series of assays including CCK-8, luciferase reporter, western blot, and tube formation assays were used to explore the function and mechanism of miR-124-3p in HG-stimulated HRMECs.Results: We found out that miR-124-3p was downregulated in HG-stimulated HRMECs. Functionally, miR-124-3p overexpression restrained the HG-induced cell injury of HRMECs. Mechanistically, we predicted 5 potential target mRNAs of miR-124-3p. G3BP stress granule assembly factor 2 (G3BP2) was validated to bind with miR-124-3p. Rescue assays showed that miR-124-3p suppressed cell injury of HG-stimulated HRMECs through G3BP2. In addition, miR-124-3p regulated the p38MAPK signaling pathway by G3BP2, and G3BP2 promoted injury of HG-treated HRMECs through the activation of the p38MAPK signaling pathway.Conclusion: MiR-124-3p suppressed the dysfunctions of HG-treated HRMECs by targeting G3BP2 and activating the p38MAPK signaling. This new discovery provided a potential biomarker for DR treatment.


Author(s):  
Yuxin He ◽  
Zhili Liu ◽  
Yinpei Huang ◽  
Bing Li

This study explored the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in hippocampal neuron autophagy in rats with chronic intermittent hypoxia (CIH). Sixty-four male Sprague-Dawley rats were randomly divided to normoxic control (CON), CIH (subdivided into groups A, B, and C undergoing intermittent hypoxia for 2, 4, and 6 weeks, respectively), solvent (CIH+Veh), or p38MAPK inhibitor (CIH+SB203580) groups. DMSO and SB203580 were injected intraperitoneally 30 min before hypoxia in CIH+Veh and CIH+SB203580 group rats, respectively. Rat learning and memory were evaluated via the Morris water maze test. Ultrastructural changes in the hippocampal CA1 region autophagic vesicles and neurons were observed under transmission electron and light microscopy. Hippocampal microtubule-associated proteins were detected by western blot. Morris water maze test showed that CIH+SB203580 group rats spent significantly more time on the platform quadrant and crossed the platform more times than CIH+Veh group rats (P < 0.01). HE staining showed greater rat cell damage in the CIH+SB group than in the CIH and CIH+Veh groups. Western blot analysis showed that CIH+SB group rats had significantly lower p-p38MAPK/p38MAPK, LC3I, and p62 expression and higher beclin-1 expression than CIH+Veh group rats (P < 0.01). Electron microscopy showed that CIH+SB203580 group rats had several small hippocampal neuron autophagic vesicles. On immunofluorescence analyses, it showed a higher LC3II expression in CIH+SB203580 group rats than in CIH+Veh group rats (P < 0.01). These results indicate that inhibition of the CIH p38MAPK signaling pathway can activate autophagy and protect hippocampal neurons in rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valérie Janelle ◽  
Mathieu Neault ◽  
Marie-Ève Lebel ◽  
Dave Maurice De Sousa ◽  
Salix Boulet ◽  
...  

T-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both in vivo and ex vivo. This is associated with p16INK4a expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells. We show that these T cells accumulate DNA damage and activate the p38MAPK signaling pathway, which preferentially leads to p16INK4a upregulation. However, in highly dysfunctional T cells, p38MAPK inhibition does not restore functionality despite attenuating senescence features. In contrast, p16INK4a targeting can improve T-cell functionality in exhausted CAR T cells. Collectively, this work provides insights into the development of T-cell dysfunction and identifies T-cell senescence as a potential target in immunotherapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Dandan Quan ◽  
Li Li ◽  
Manzhen Zuo

Objective. To explore the efficacy of low molecular heparin on preeclampsia by inhibiting apoptosis of trophoblasts via the p38MAPK signaling pathway. Methods. A preeclampsia rat model was established, and the effects of low molecular heparin on preeclampsia via the p38MAPK signaling pathway were analyzed based on intervention of the rats with different combinations of low molecular heparin and p38MAPK signaling pathway activator. Furthermore, a hypoxia/reoxygenation model of trophoblasts in vitro was established to explore the effects of low molecular heparin on trophoblasts via the p38MAPK signaling pathway. Results. After treatment with low molecular heparin, pregnant rats in the heparin group showed significantly decreased blood pressure, 24 h proteinuria, and p38MAPK protein levels in placenta tissues and decreased apoptosis rate of placenta tissue cells (all P < 0.05 ) and showed more fetal rats and lowered weight of them (both P < 0.05 ) but showed no significant change in the weight of placenta (all P > 0.05 ). Pregnant rats treated with low molecular heparin and p38MAPK activator showed significantly higher blood pressure, 24 h proteinuria, and p38MAPK protein levels in placenta tissues and apoptosis rate of placenta tissue cells than those of pregnant rats in the heparin group (all P < 0.05 ) and also showed less fetal rats and lighter fetal rats than those in the heparin group (both P < 0.05 ) but showed no difference with them in the weight of placenta ( P > 0.05 ). Further analysis revealed that low molecular heparin could protect the survival and migration of trophoblasts under hypoxia/reoxygenation conditions and reduce apoptosis of them (all P < 0.05 ). Conclusion. Low molecular heparin can alleviate preeclampsia by inhibiting the p38MAPK signaling pathway and can inhibit apoptosis of trophoblasts and promote proliferation and migration of them.


Sign in / Sign up

Export Citation Format

Share Document