scholarly journals Discovery of Post-Translational Modifications in Emiliania huxleyi

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2027
Author(s):  
Van-An Duong ◽  
Onyou Nam ◽  
EonSeon Jin ◽  
Jong-Moon Park ◽  
Hookeun Lee

Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.

2019 ◽  
Vol 56 (3) ◽  
pp. 458-469 ◽  
Author(s):  
Amalia Forte ◽  
Xiaoke Yin ◽  
Marika Fava ◽  
Ciro Bancone ◽  
Marilena Cipollaro ◽  
...  

Abstract OBJECTIVES We aimed to compare the intracellular proteome of ascending aortas from patients with stenotic bicuspid (BAV) and tricuspid aortic valves (TAV) to identify BAV-specific pathogenetic mechanisms of aortopathy and to verify the previously reported asymmetric expression of BAV aortopathy [concentrated at the convexity (CVX)] in its ‘ascending phenotype’ form. METHODS Samples were collected from the CVX and concavity sides of non-aneurysmal ascending aortas in 26 TAV and 26 BAV patients undergoing stenotic aortic valve replacement. Aortic lysates were subjected to cellular protein enrichment by subfractionation, and to proteome comparison by 2-dimensional fluorescence difference in-gel electrophoresis. Differentially regulated protein spots were identified by liquid chromatography–tandem mass spectrometry and analysed in silico. Selected results were verified by immunofluorescence and reverse transcription-polymerase chain reaction. RESULTS In BAV samples, 52 protein spots were differentially regulated versus TAV samples at the CVX and 10 spots at the concavity: liquid chromatography–tandem mass spectrometry identified 35 and 10 differentially regulated proteins, respectively. Charge trains of individual proteins (e.g. annexins) suggested the presence of post-translational modifications possibly modulating their activity. At the CVX, 37 of the 52 different protein spots showed decreased expression in BAV versus TAV. The affected biological pathways included those involved in smooth muscle cell contractile phenotype, metabolism and cell stress. CONCLUSIONS The observed differential proteomics profiles may have a significant impact on the pathogenesis of the aortopathy, pointing the way for further studies. At a preaneurysmal stage, an aorta with BAV shows more protein expression changes and potentially more post-translational modifications at the CVX of the ascending aorta than at the concavity, compared to that of TAV.


Sign in / Sign up

Export Citation Format

Share Document