scholarly journals Chemical Characterization of Plant Extracts and Evaluation of their Nematicidal and Phytotoxic Potential

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2216
Author(s):  
Raúl Velasco-Azorsa ◽  
Héctor Cruz-Santiago ◽  
Ignacio Cid del Prado-Vera ◽  
Marco Vinicio Ramirez-Mares ◽  
María del Rocío Gutiérrez-Ortiz ◽  
...  

Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 µg mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL−1. Stigmasterol (1), β-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-β-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides.

Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1831-1838 ◽  
Author(s):  
G. STEPEK ◽  
R. H. C. CURTIS ◽  
B. R. KERRY ◽  
P. R. SHEWRY ◽  
S. J. CLARK ◽  
...  

SUMMARYCysteine proteinases from the fruit and latex of plants, such as papaya, pineapple and fig, have previously been shown to have substantial anthelmintic efficacy, in vitro and in vivo, against a range of animal parasitic nematodes. In this paper, we describe the in vitro effects of these plant extracts against 2 sedentary plant parasitic nematodes of the genera Meloidogyne and Globodera. All the plant extracts examined caused digestion of the cuticle and decreased the activity of the tested nematodes. The specific inhibitor of cysteine proteinases, E-64, blocked this activity completely, indicating that it was essentially mediated by cysteine proteinases. In vitro, plant cysteine proteinases are active against second-stage juveniles of M. incognita and M. javanica, and some cysteine proteinases also affect the second-stage juveniles of Globodera rostochiensis. It is not known yet whether these plant extracts will interfere with, or prevent invasion of, host plants.


Nematology ◽  
2011 ◽  
Vol 13 (8) ◽  
pp. 965-975 ◽  
Author(s):  
Yirina Valdes ◽  
Roland N. Perry ◽  
Nicole Viaene ◽  
Maurice Moens

AbstractThe potato cyst nematode, Globodera rostochiensis, is a quarantine organism. Environmentally benign control measures for this economically important pest are needed. Green manures, in particular plants from the Brassicaceae, suppress some plant-parasitic nematodes and have potential as control agents. This study examined if growing and incorporating cover crops from the Brassicaceae family influenced hatching of G. rostochiensis. The effect of root diffusates and plant extracts, as well as soil incorporation of plant material from three commonly used species of green manures, was studied in in vitro bioassays and pot tests. The results showed that brassica diffusates and plant extracts were not nematicidal. In addition, although they did not cause hatch by themselves, pretreatment with these solutions enhanced subsequent hatch in host root diffusates. The results are discussed in the context of the hatching response of G. rostochiensis and the likely influence on field usage of these green manures.


Nematology ◽  
2017 ◽  
Vol 19 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Julio C.P. Silva ◽  
Vicente P. Campos ◽  
Eduardo S. Freire ◽  
Willian C. Terra ◽  
Liliana E. Lopez

Ethanol (EtOH) is less harmful to humans than currently available nematicide molecules. This study evaluated the efficacy of EtOH in controlling Meloidogyne incognita in vitro and in lettuce plants under glasshouse conditions. Aqueous EtOH solutions (5-70% volume) and their vapours caused an acute nematicidal effect in vitro in second-stage juveniles (J2) of M. incognita and reduced hatching of J2. There was a large reduction of galls and eggs in the root system when 40 ml of EtOH was applied to M. incognita-infested soil at concentrations of 40 and 70%. Water exposed to EtOH vapours for 1 h became toxic, and a 12-h exposure caused 100% J2 mortality. Use of a plastic cover did not increase the efficiency of EtOH in controlling M. incognita in lettuce plants. The observed EtOH effects indicate its prospective use in controlling plant-parasitic nematodes, especially in glasshouses.


Parasitology ◽  
1996 ◽  
Vol 113 (6) ◽  
pp. 589-597 ◽  
Author(s):  
R. H. C. Curtis

SUMMARYSecretions of plant-parasitic nematodes which are released into plant tissue may play critical roles in plant-nematode interactions. The identification and characterization of these molecules are of fundamental importance and may help to facilitate the development of novel strategies to interfere with nematode infection of plants and thereby decrease nematode-induced damage to crops. An antibody-based approach was used to isolate molecules present on the nematode surface and in nematode secretions. Monoclonal antibodies (MAbs) were produced to secretions and to whole Heterodera avenue 2nd-stage juveniles; several of these MAbs recognized molecules present in nematode secretions produced in vitro. Three of these molecules have been partly characterized in H. avenae, Globodera rostochiensis, G. pallida and Meloidogyne incognita. A MAb reacting with the surfaces of these nematodes recognized antigens of different molecular weight in each of the species tested. This difference in antigenicity might be related to specific functions in these nematodes. Preliminary results show that this antibody also localized the antigen in root cells surrounding the feeding site induced by M. incognita in Arabidopsis thaliana.


Nematology ◽  
2012 ◽  
Vol 14 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Prasanna Holajjer ◽  
Anju Kamra ◽  
Hari S. Gaur ◽  
Dolly Wattal Dhar

The nematicidal activity of a terrestrial cyanobacterium, Synechococcus nidulans, was investigated. Extracts of S. nidulans cultures collected at weekly intervals for 5 weeks were sonicated and tested against second-stage juveniles (J2) of Meloidogyne incognita. Extracts of 2-week-old cultures caused the maximum immobility (94.2%) and mortality (29.3%) of J2, compared with controls (medium and water). This extract was tested in vitro against infective stages and hatch of M. graminicola, Heterodera cajani, H. avenae and Rotylenchulus reniformis. Extracts of sonicated S. nidulans caused a mean immobility in the range of 91.3-98.4% in infective stages of the nematodes, with no significant difference with an increase in exposure time from 24 to 72 h. The greatest mean percentage mortality was observed in M. graminicola (31.5%) followed by M. incognita (29.3%), H. avenae (20.9%), and R. reniformis and H. cajani (both 17.4%) with a significant increase with the period of exposure from 24 to 72 h. No significant differences in mortality were observed between M. graminicola and M. incognita and between H. avenae and H. cajani. The percentage hatch inhibition over control (water) was greatest in M. incognita (94.2%), followed by H. avenae (91.6%), H. cajani (72.3%) and M. graminicola (70.6%), and least in R. reniformis (58.6%).


2013 ◽  
Vol 67 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Y. Mountassir ◽  
A. Benyaich ◽  
M. Rezrazi ◽  
P. Berçot ◽  
L. Gebrati

The objectives of this work were to carry out a complete characterization of textile wastewater, resulting from a textile unit located in the Marrakesh region. A physico-chemical characterization has been performed, focused on organic and toxicological aspects. The cladoceran Daphnia magna was used as the sensor organism and lethal concentration as a criterion to measure the toxicity of textile wastewater. The physico-chemical and toxicological status of a local textile effluent showed considerable values limitation, when compared to the European Union standard limit and Moroccan guide level and other studies. In view of those characteristics, the wastewater effluent from the textile industry should be considered to be treated before discharge to the environment.


Nematology ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 155-167 ◽  
Author(s):  
Prakash Banakar ◽  
Amita Sharma ◽  
Catherine J. Lilley ◽  
Nagavara Prasad Gantasala ◽  
Mukesh Kumar ◽  
...  

Root-knot nematodes are the most economically important group of plant-parasitic nematodes. In the present study, functional validation using in vitro RNAi was carried out on Meloidogyne incognita with two FMRFamide-like peptide genes, flp-14 and flp-18, and a subventral pharyngeal gland specific gene, 16D10. It was found that RNAi silencing of each gene reduced the attraction of M. incognita at different time intervals both in combination and individually. Silencing of the genes reduced nematode infection by 23-30% and development as indicated by a reduction in the number of females by 26-62%. Reproduction was decreased by 27-73% and fecundity was decreased by 19-51%. In situ hybridisation revealed the expression of flp-18 in cells associated with the ventral and retro vesicular ganglia of the central nervous system. qRT-PCR supported the correlation between phenotypic effects of silencing with that of transcript quantification.


Sign in / Sign up

Export Citation Format

Share Document