scholarly journals A Statistically Supported Antioxidant Activity DFT Benchmark—The Effects of Hartree–Fock Exchange and Basis Set Selection on Accuracy and Resources Uptake

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5058
Author(s):  
Maciej Spiegel ◽  
Andrzej Gamian ◽  
Zbigniew Sroka

Polyphenolic compounds are now widely studied using computational chemistry approaches, the most popular of which is Density Functional Theory. To ease this process, it is critical to identify the optimal level of theory in terms of both accuracy and resource usage—a challenge we tackle in this study. Eleven DFT functionals with varied Hartree–Fock exchange values, both global and range-separated hybrids, were combined with 14 differently augmented basis sets to calculate the reactivity indices of caffeic acid, a phenolic acid representative, and compare them to experimental data or a high-level of theory outcome. Aside from the main course, a validation of the widely used Janak’s theorem in the establishment of vertical ionization potential and vertical electron affinity was evaluated. To investigate what influences the values of the properties under consideration, linear regression models were developed and thoroughly discussed. The results were utilized to compute the scores, which let us determine the best and worst combinations and make broad suggestions on the final option. The study demonstrates that M06–2X/6–311G(d,p) is the best fit for such research, and, curiously, it is not necessarily essential to include a diffuse function to produce satisfactory results.

2010 ◽  
Vol 7 (2) ◽  
pp. 449-455
Author(s):  
S. D. S. Chauhan ◽  
A.K. Sharma ◽  
R. Kumar ◽  
D. Kulshreshtha ◽  
R. Gupta ◽  
...  

Vibrational frequencies of aniline in gas phase have been calculated and each of their modes of vibration assigned properly at RHF and DFT with 6-31G(d) basis set. In the present study, it has been observed that the 6-31G(d) basis set at both RHF and DFT levels of calculations provides better agreement to the experimental findings as compared to other basis sets. Simultaneously, Density functional theory is found to be superior to its counterpart Hartree Fock method.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


2007 ◽  
Vol 06 (03) ◽  
pp. 549-562
Author(s):  
ABRAHAM F. JALBOUT

The transition states for the H 2 NO decomposition and rearrangements mechanisms have been explored by the CBS-Q method or by density functional theory. Six transition states were located on the potential energy surface, which were explored with the Quadratic Complete Basis Set (CBS-Q) and Becke's one-parameter density functional hybrid methods. Interesting deviations between the CBS-Q results and the B1LYP density functional theory lead us to believe that further study into this system is necessary. In the efforts to further assess the stabilities of the transition states, bond order calculations were performed to measure the strength of the bonds in the transition state.


2012 ◽  
Vol 512-515 ◽  
pp. 2059-2063 ◽  
Author(s):  
Hui Yi Pei ◽  
Ai Fang Gao

The electron affinities of the CnH2n+1SS/CnH2n+1SS- (n=1-5) species have been determined using four different density functional or hybrid Hartree-Fock density functional methods. The basis set used in this work is of double- plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The most reliable adiabatic electron affinities, obtained at the DZP++ BP86 level of theory, are 1.794 eV (for CH3SS), 1.777 eV (for C2H5SS), 1.778 eV (a) and 1.809 eV (b) for the two isomers of C3H7SS, 1.782 eV (a), 1.825 eV (b) and 1.778 eV (c) for the three isomers of C4H9SS, and 1.784 eV (a), 1.875 eV (b), 1.805 eV (c) and 1.835 eV (d) for the three isomers of C5H11SS, respectively.


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 769-771 ◽  

Abstract Molecular orbital calculations were performed for the six saturated alkylamines (CH3NH2 , (CH3)2 NH, (CH 3)3 N, CH 3CH2NH2 , (CH3)2 CHNH2 , (CH3)3 CNH2), their protonated cations (CH3NH3 + , (CH3)2NH2 + , (CH3)3NH + , CH3CH2NH3 + , (CH3)2CHNH3 + , (CH3)3CNH3+), and (CH3)4 N + using the Hartree-Fock, second-order M0ller-Plesset, and density functional theory methods with the 6-311+G(d,p) basis set. Protonation lengthens the C-N bonds of the amines by 0.05 -0.08 Å and shortens the C-C bonds of CH3CH2NH2, (CH3)2CHNH2 , and (CH3)3CNH2 by ca. 0.01 Å.


2007 ◽  
Vol 06 (03) ◽  
pp. 421-434 ◽  
Author(s):  
JÍMENEZ-FABIAN ◽  
A. F. JALBOUT

The torsional potential function for methyl rotation in dimethyl ether (DME) and dimethyl sulfide (DMS) has been determined by utilizing ab initio (Hartree–Fock and MP2) and density functional theory (B3LYP, B3P86, and B3PW91) methods along with several basis sets. Natural bond orbital (NBO) analysis was also applied to investigate the origin of the rotational barrier.


2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document